Mục từ này cần được bình duyệt
Khác biệt giữa các bản “Mặt trăng”
(→‎Thiên thực: chưa tìm được nguồn cho ý này -> tương lai có thể cho vào nếu tìm được nguồn)
Dòng 266: Dòng 266:
 
Khác với nhật thực, trong nguyệt thực, chóp bóng tối đằng sau Trái đất có thể bao phủ tới 4 lần Mặt trăng.<ref name='eclipse'/> Khi Mặt trăng không nằm hoàn toàn trong bóng tối của Trái đất, nguyệt thực một phần có thể được quan sát.<ref name='eclipse'/> Vì bóng tối của Trái đất là lớn so với Mặt trăng, nên nguyệt thực toàn phần kéo dài lâu hơn so với nhật thực toàn phần.<ref name='eclipse'/> Khoảng 20 phút trước khi Mặt trăng đi vào bóng tối Trái đất, Mặt trăng [[trăng tròn|tròn đầy]] bị mờ dần đi, do Trái đất che bớt ánh sáng rọi đến nó.<ref name='eclipse'/> Khi Mặt trăng di chuyển trên quỹ đạo bắt đầu vào bóng tối Trái đất, hình dạng tròn của bóng tối Trái đất bắt đầu in lên bề mặt của Mặt trăng.<ref name='eclipse'/> Khi đã nằm hoàn toàn trong bóng tối của Trái đất, Mặt trăng vẫn có thể được nhìn thấy khá tối với màu hơi đỏ, được rọi sáng bởi ánh sáng Mặt trời đi cong qua [[khí quyển]] Trái đất.<ref name='eclipse'/> Nguyệt thực toàn phần có thể kéo dài đến một tiếng 40 phút, còn khoảng thời gian nguyệt thực một phần, trước và sau nguyệt thực toàn phần, có thể kéo dài khoảng 1 tiếng đồng hồ.<ref name='eclipse'/> Nguyệt thực toàn phần có thể được quan sát bởi tất cả mọi người ở nửa Trái đất quay về phía Mặt trăng, trái ngược với nhật thực toàn phần chỉ dành số ít nằm trong vệt đi qua của chóp bóng tối Mặt trăng.<ref name='eclipse'/>  
 
Khác với nhật thực, trong nguyệt thực, chóp bóng tối đằng sau Trái đất có thể bao phủ tới 4 lần Mặt trăng.<ref name='eclipse'/> Khi Mặt trăng không nằm hoàn toàn trong bóng tối của Trái đất, nguyệt thực một phần có thể được quan sát.<ref name='eclipse'/> Vì bóng tối của Trái đất là lớn so với Mặt trăng, nên nguyệt thực toàn phần kéo dài lâu hơn so với nhật thực toàn phần.<ref name='eclipse'/> Khoảng 20 phút trước khi Mặt trăng đi vào bóng tối Trái đất, Mặt trăng [[trăng tròn|tròn đầy]] bị mờ dần đi, do Trái đất che bớt ánh sáng rọi đến nó.<ref name='eclipse'/> Khi Mặt trăng di chuyển trên quỹ đạo bắt đầu vào bóng tối Trái đất, hình dạng tròn của bóng tối Trái đất bắt đầu in lên bề mặt của Mặt trăng.<ref name='eclipse'/> Khi đã nằm hoàn toàn trong bóng tối của Trái đất, Mặt trăng vẫn có thể được nhìn thấy khá tối với màu hơi đỏ, được rọi sáng bởi ánh sáng Mặt trời đi cong qua [[khí quyển]] Trái đất.<ref name='eclipse'/> Nguyệt thực toàn phần có thể kéo dài đến một tiếng 40 phút, còn khoảng thời gian nguyệt thực một phần, trước và sau nguyệt thực toàn phần, có thể kéo dài khoảng 1 tiếng đồng hồ.<ref name='eclipse'/> Nguyệt thực toàn phần có thể được quan sát bởi tất cả mọi người ở nửa Trái đất quay về phía Mặt trăng, trái ngược với nhật thực toàn phần chỉ dành số ít nằm trong vệt đi qua của chóp bóng tối Mặt trăng.<ref name='eclipse'/>  
  
Do Mặt trăng liên tục chắn khung cảnh bầu trời một diện tích tròn rộng nửa độ,<ref name="Cox2000_p308_p340"/> hiện tượng [[che khuất]] xảy ra khi một hành tinh hay ngôi sao sáng đi qua phía sau Mặt trăng và bị che mất.<ref name="observingmoon-141">[[#observingmoon|Wlasuk, 2000]], [https://books.google.com.vn/books?id=TWtLIOlPwS4C&pg=RA10-PP9 tr.141]</ref> Chiếu theo khái niệm này thì nhật thực là sự che khuất Mặt trời,<ref name="observingmoon-141"/> mặc dù có định nghĩa rằng che khuất là một trường hợp của thiên thực trong đó thiên thể bị che có kích thước biểu kiến nhỏ hơn nhiều.<ref>Joshua Winn, chương ''[https://arxiv.org/pdf/1001.2010v5.pdf Transits and Occultations]'', sách ''Exoplanet'', biên tập bởi Seager, [[Nhà xuất bản Đại học Arizona]], Tucson, 15 tháng 1 năm 2011, ISBN 978-0816529452</ref> Mỗi vùng trên Trái đất có thể quan sát sự che khuất của các sao ở các thời điểm khác nhau và theo cách khác nhau, tương tự như với nhật thực, và hiện tượng che khuất từng được sử dụng để xác định vị trí của Mặt trăng và tọa độ địa lý của người quan sát.<ref name="observingmoon-141"/> Sự che khuất bởi Mặt trăng cũng được tận dụng để phát hiện các cặp [[sao đôi]] với khoảng cách biểu kiến từ 0,02 giây cung.<ref name="observingmoon-141"/> Đã có đề xuất sử dụng hiện tượng che khuất bởi Mặt trăng để dựng ảnh chụp [[tia gamma]] và [[tia X cứng]] của các nguồn thiên văn.<ref name="LOCO"/>
+
Do Mặt trăng liên tục chắn khung cảnh bầu trời một diện tích tròn rộng nửa độ,<ref name="Cox2000_p308_p340"/> hiện tượng [[che khuất]] xảy ra khi một hành tinh hay ngôi sao sáng đi qua phía sau Mặt trăng và bị che mất.<ref name="observingmoon-141">[[#observingmoon|Wlasuk, 2000]], [https://books.google.com.vn/books?id=TWtLIOlPwS4C&pg=RA10-PP9 tr.141]</ref> Chiếu theo khái niệm này thì nhật thực là sự che khuất Mặt trời,<ref name="observingmoon-141"/> mặc dù có định nghĩa rằng che khuất là một trường hợp của thiên thực trong đó thiên thể bị che có kích thước biểu kiến nhỏ hơn nhiều.<ref>Joshua Winn, chương ''[https://arxiv.org/pdf/1001.2010v5.pdf Transits and Occultations]'', sách ''Exoplanet'', biên tập bởi Seager, [[Nhà xuất bản Đại học Arizona]], Tucson, 15 tháng 1 năm 2011, ISBN 978-0816529452</ref> Mỗi vùng trên Trái đất có thể quan sát sự che khuất của các sao ở các thời điểm khác nhau và theo cách khác nhau, tương tự như với nhật thực, và hiện tượng che khuất từng được sử dụng để xác định vị trí của Mặt trăng và tọa độ địa lý của người quan sát.<ref name="observingmoon-141"/> Sự che khuất bởi Mặt trăng cũng được tận dụng để phát hiện các cặp [[sao đôi]] với khoảng cách biểu kiến từ 0,02 giây cung.<ref name="observingmoon-141"/> Đã có đề xuất sử dụng hiện tượng che khuất bởi Mặt trăng để dựng ảnh chụp [[tia gamma]] và [[tia X cứng]] của các nguồn thiên văn.<ref name="LOCO">Miller, ''[https://www.spiedigitallibrary.org/conference-proceedings-of-spie/6686/66860D/The-Lunar-Occultation-Observer-LOCO-mission-concept/10.1117/12.735766.short?SSO=1 The Lunar Occultation Observer (LOCO) mission concept]'', UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XV, Kỷ yếu Hội nghị SPIE, số 6686, 2007, [[DOI]] [https://doi.org/10.1117/12.735766 10.1117/12.735766]</ref>
 
</div><div class="mid1">
 
</div><div class="mid1">
 
[[File:Geometry of a Total Solar Eclipse vi.svg|thumb|none|Sơ đồ minh họa nhật thực toàn phần.<ref name='eclipse'/>]]
 
[[File:Geometry of a Total Solar Eclipse vi.svg|thumb|none|Sơ đồ minh họa nhật thực toàn phần.<ref name='eclipse'/>]]

Phiên bản lúc 21:11, ngày 16 tháng 4 năm 2021

Mặt trăngvệ tinh tự nhiên duy nhất của Trái đất,[1][↓ 1] và đã được con người quan sát từ thời thượng cổ,[2] vì sự xuất hiện nổi bật trên bầu trời, với độ sáng cao thứ hai sau Mặt trời.[↓ 2] Là một thiên thể gần hình cầu,[3][4] kích thước khoảng 27% Trái đất,[5] với khối lượng cỡ hành tinh,[↓ 3] khoảng 1,23% khối lượng Trái đất,[5] Mặt trăng chứa nhiều đất đá silicat[6] và không có khí quyển,[5] thủy quyển[6] hay từ quyển[7] đáng kể.

Một giả thuyết được chấp nhận rộng rãi cho rằng Mặt trăng hình thành cách đây hơn 4,5 tỷ năm,[8] không lâu sau khi Trái đất hình thành,[9] từ vật chất văng ra sau một vụ va chạm lớn giữa Trái đất và một thiên thể giả định mang tên Theia[↓ 4] có kích thước cỡ Sao hỏa.[10][11]

Mặt trăng ở trong quỹ đạo đồng bộ với Trái đất, tức là chu kỳ tự quay của Mặt trăng bằng với chu kỳ quay quanh Trái đất, khoảng 27,3 ngày, do đó nó luôn quay một mặt về phía Trái đất, là mặt gần.[12] Do hiện tượng bình động nên quan sát từ Trái đất qua nhiều thời điểm, với mỗi thời điểm ở góc nhìn hơi khác, sẽ thấy tổng cộng nhiều hơn một nửa diện tích Mặt trăng (59%).[3][13] Các pha Mặt trăng, từ trăng tròn đến trăng non, tuần hoàn theo chu kỳ giao hội 29,5 ngày,[12] và tạo thành cơ sở cho lịch Mặt trăng (âm lịch).[14] Đường kính góc của Mặt trăng trên bầu trời tương đương với Mặt trời, khoảng hơn nửa độ, do đó Mặt trăng che kín Mặt trời trong nhật thực toàn phần.[15] Lực hấp dẫn của Mặt trăng gây ra thủy triều trên đại dương ở Trái đất, đồng thời gây ra hiệu ứng tương tự cho phần vỏ và lõi đất đá của Trái đất,[16] và làm cho một ngày ở Trái đất bị dài hơn một chút.[17] Khoảng cách trung bình từ Mặt trăng đến Trái đất là khoảng 384000 km,[18] tương đương 1,28 giây ánh sáng, hay khoảng 30 lần đường kính Trái đất.[3] Trong tương lai xa, khoảng cách từ Mặt trăng đến Trái đất sẽ tăng dần, do hiệu ứng thủy triều, và Mặt trăng sẽ xuất hiện nhỏ dần.[17]

Trong Hệ Mặt trời, Mặt trăng là vệ tinh tự nhiên lớn thứ năm.[19] Nếu xét về tỷ lệ kích thước so với hành tinh mà nó quay quanh thì Mặt trăng đạt tỷ lệ này cao nhất trong Hệ Mặt trời.[↓ 5] Bề mặt Mặt trăng có các biển Mặt trăng là các vùng vật chất màu tối, để lại bởi hoạt động núi lửa cũ, nằm chủ yếu ở mặt gần, giữa các vùng vỏ cũ cao sáng màu có nhiều hố va chạm.[20][3] Các hố va chạm trên Mặt trăng được bảo quản tốt và cung cấp nhiều thông tin về quá khứ của Hệ Mặt trời.[21] Trọng trường ở bề mặt Mặt trăng bằng khoảng 1/6 so với Trái đất.[22] Nhiệt độ thay đổi mạnh theo điều kiện nhận ánh sáng Mặt trời, trung bình từ khoảng 100K vào ban đêm đến trên 100°C vào ban ngày.[23] Ở đáy những hố va chạm vĩnh viễn không nhận được ánh nắng tại các cực, tồn tại hàng trăm tỷ tấn nước đá.[6]

Chương trình Luna của Liên Xô đã đưa được vật thể nhân tạo đầu tiên lên Mặt trăng là tàu không người lái Luna 2, một tàu vũ trụ được chủ đích cho đâm xuống bề mặt Mặt trăng vào tháng 9 năm 1959.[24] Sau đó vào năm 1966, tàu Luna 9 đã hạ cánh an toàn lên Mặt trăng.[25] Chương trình Apollo của Hoa Kỳ những năm tiếp theo đã mang được con người lên Mặt trăng, với Apollo 8 năm 1968 lần đầu đưa người bay trên quỹ đạo quanh Mặt trăng, rồi Apollo 11 vào tháng 7 năm 1969 cùng 5 chuyến bay khác sau đó đã hạ cánh với con người và thiết bị lên thiên thể này.[25] Các chuyến thám hiểm này đã mang về Trái đất đá Mặt trăng được dùng để nghiên cứu và phát triển các hiểu biết về Mặt trăng và nguồn gốc hình thành.[25] Từ sau chuyến bay Apollo 17 năm 1972 đến hiện tại, chỉ có các tàu không người lái đến thám hiểm Mặt trăng.[25]

Sự hiện diện của Mặt trăng trên bầu trời, theo chu kỳ pha Mặt trăng, đã để lại dấu ấn trong xã hội và văn hóa của loài người.[26] Ảnh hưởng trong văn hóa xã hội thể hiện ở ngôn ngữ,[12] hệ thống âm lịch,[14] nghệ thuật,[27]thần thoại.[28]


Minh họa nghệ thuật một va chạm lớn.[29]

Trước hội nghị năm 1984, có các lực lượng ủng hộ ba giả thuyết "truyền thống", cộng với vài người bắt đầu nghiêm túc xem xét lý thuyết va chạm lớn, và rất nhiều người khác không có quan điểm rõ ràng và cho rằng cuộc tranh luận sẽ không bao giờ kết thúc. Sau hội nghị, cơ bản chỉ còn có hai nhóm: phe va chạm lớn và phe bất khả tri.[11]

Giản đồ một số mô hình của giả thuyết va chạm lớn.[30]

Nguồn gốc hình thành

Mặt trăng hình thành khoảng hơn 4,5 tỷ năm trước.[8] Nghiên cứu về hafniwolfram ở vỏ Mặt trăng gợi ý thiên thể này được tạo ra vào khoảng 50 triệu năm sau khi Hệ Mặt trời hình thành.[31]

Đã có nhiều giả thuyết từ sớm về nguồn gốc hình thành Mặt trăng, đa số thuộc về một trong ba nhóm.[32] Nhóm thứ nhất cho rằng vật chất văng ra từ Trái đất trong thời kỳ đang hình thành bởi lực ly tâm, sau đó tập hợp lại thành Mặt trăng.[33][34] Tuy nhiên giả thuyết này đòi hỏi Trái đất phải quay nhanh đến mức phi thực tế.[34] Nhóm thứ hai giả định trường hấp dẫn của Trái đất đã thu hút thiên thể Mặt trăng đến từ nơi khác,[35] nhưng giả thuyết này đòi hỏi một khí quyển Trái đất hấp thụ động năng của Mặt trăng khi nó bay tới - một khả năng rất khó xảy ra.[34] Nhóm thứ ba đề xuất sự hình thành cùng lúc của Trái đất và Mặt trăng từ đĩa bồi tụ khi Hệ Mặt trời đang hình thành.[34][32] Giả thuyết này không giải thích được tại sao Mặt trăng lại có các tính chất khác với Trái đất,[34] ví dụ như ít kim loại hơn hẳn so với Trái đất.[6] Nhóm thứ nhất và thứ ba cũng không tiên đoán được mômen động lượng của hệ Trái đất - Mặt trăng.[36]

Để giải thích được tốt nhiều bằng chứng thực nghiệm, một nhóm giả thuyết thứ tư đã được xây dựng, gọi là giả thuyết va chạm lớn.[37][29] Giả thuyết này cho rằng hệ Trái đất - Mặt trăng được hình thành sau một vụ va chạm lớn, lệch tâm, giữa một thiên thể có kích thước vào cỡ Sao hỏa, tên là Theia, với thiên thể tiền Trái đất.[10][38] Vụ va chạm đã làm văng nhiều vật liệu vào không gian, một phần rời xa khỏi Trái đất, và một phần tạo thành đĩa bồi tụ quanh Trái đất, dần dần tích tụ lại để hình thành nên Mặt trăng.[39] Vào một hội nghị về nguồn gốc Mặt trăng năm 1984 ở Kona, Hawaii, giả thuyết va chạm lớn bắt đầu được đa số tán thành là hợp lý.[11]

Các vụ va chạm lớn được cho là có khả năng xảy ra trong thời kỳ hình thành của Hệ Mặt trời.[40][29] Các mô phỏng trên máy tính của vụ va chạm lớn đã cho ra các kết quả phù hợp với quan sát về khối lượng của lõi Mặt trăng và mômen động lượng của hệ Trái đất – Mặt trăng.[38][29] Vụ va chạm đã giải phóng rất nhiều năng lượng, đủ để làm nóng chảy lớp vỏ Trái đất, và tạo nên đại dương dung nham.[41] Tương tự, Mặt trăng mới hình thành cũng có đại dương dung nham của nó.[42] Theo giả thuyết va chạm lớn, phần lớn Mặt trăng được hình thành từ lớp vỏ của Trái đất và Theia, phù hợp với thành phần Mặt trăng chứa ít kim loại và nhiều silicat.[37][29] Các thành phần dễ bốc hơi được giải phóng bởi nhiệt độ cao ở giai đoạn đầu của vụ va chạm, giải thích cho việc không còn vật chất dễ bốc hơi ở trên Mặt trăng.[37] Nếu thành phần của Mặt trăng chứa nhiều thành phần của vỏ Trái đất, thì có thể giải thích được sự tương tự về hóa học của Mặt trăng với vỏ Trái đất, ví dụ như về nồng độ đồng vị oxy.[37]

Tuy giả thuyết va chạm lớn có thể giải thích được nhiều kết quả quan sát, vẫn còn những câu hỏi chưa được giải đáp, đa số liên quan đến thành phần của Mặt trăng.[29][43] Năm 2001, một nhóm nghiên cứu ở Viện Carnegie tại Washington báo cáo kết quả đo đạc chính xác cao của đặc trưng đồng vị oxy trong đá Mặt trăng, cho thấy tính chất giống với đá ở Trái đất.[44] Các nghiên cứu khác sau đó cũng cho thấy thành phần đồng vị wolfram[45]titani[46] ở vỏ Mặt trăng rất giống với Trái đất. Đá Mặt trăng, thu được sau chương trình Apollo, có đặc trưng đồng vị giống với đá trên Trái đất,[29] và khác biệt với hầu hết các thiên thể khác trong Hệ Mặt trời.[47] Trong khi đó, có các mô phỏng về vụ va chạm lớn cho thấy phần lớn Mặt trăng được hình thành từ vật liệu của Theia, chứ không phải từ thiên thể tiền Trái đất,[47] dù cho có gợi ý tỷ lệ vật liệu đến từ tiền Trái đất cao hơn các mô phỏng trước đây.[48][46] Để giải thích cho sự tương đồng hóa học giữa Mặt trăng và vỏ Trái đất, đã có các giả thuyết khác nhau được đưa ra,[47][45] bao gồm cả đề xuất xem xét lại toàn diện giả thuyết va chạm lớn.[29][43] Có các giả thuyết cho rằng Theia có thể có thành phần hóa học tương đồng thiên thể tiền Trái đất,[49] với xác suất tới 20%,[47] mặc dù trước đó đã từng có báo cáo năm 2007 rằng có ít hơn vài phần trăm khả năng là Theia và Trái đất có cùng đặc trưng đồng vị.[50] Có giả thuyết nữa giải thích sự tương tự hóa học bằng cơ chế hòa trộn vật liệu bốc hơi sau sự kiện va chạm lớn, để thành nguyên liệu hình thành cho cả hai,[50] mặc dù giả định này vẫn còn gây tranh cãi.[51] Trong mọi trường hợp, sự tương đồng hóa học giúp loại trừ khả năng Mặt trăng được hình thành ở xa và độc lập với Trái đất.[37]

Các lý thuyết cải tiến từ giả thuyết va chạm lớn vẫn đang được phát triển để giải thích các quan sát ngày càng chính xác về Mặt trăng.[29][52][53] Một lý thuyết cải tiến cho rằng vật liệu văng ra từ vụ va chạm lớn ban đầu hình thành nên hai thiên thể vệ tinh của Trái đất.[54] Sau đó, chúng nhập lại thành Mặt trăng trong một va chạm ở tốc độ thấp.[54] Giả thuyết này giải thích được tại sao mặt xa của Mặt trăng có vỏ dày hơn so với mặt gần.[54]


Đặc tính vật lý

Mặt trăng có hình dạng gần ellipsoid do tác động của lực thủy triều, với trục lớn lệch khoảng 30° so với phương nối đến Trái đất.[4] Trục lớn của hình dạng cũng lệch khoảng 30° so với trục lớn của trường trọng lực Mặt trăng, vì trục lớn của trường trọng lực gần trùng với phương nối đến Trái đất.[4] Hình dạng của Mặt trăng hơi méo hơn so với mức gây ra bởi lực thủy triều hiện tại.[4] Hóa thạch hình dạng này gợi ý về lịch sử của Mặt trăng.[4] Mặt trăng đã nguội và đông cứng khi lực thủy triều còn mạnh, khi nó ở khoảng cách đến Trái đất bằng khoảng nửa so với giá trị hiện nay.[4] Ngày nay, nó đã quá lạnh và cứng đến mức không thể điều chỉnh hình dạng lại cho phù hợp với lực thủy triều yếu hơn ở quỹ đạo hiện tại.[4]

Với mật độ khối lượng trung bình 3,3 g/cm3, bằng 1/5 tỷ trọng Trái đất,[22] Mặt trăng dường như chứa chủ yếu đất đá silicat và thiếu sắt và kim loại hơn hẳn Trái đất.[6] Tuy có mật độ khối lượng trung bình nhẹ so với Trái đất, trong số các vệ tinh tự nhiên lớn của các hành tinh trong Hệ Mặt trời, Mặt trăng có mật độ khối lượng đứng thứ nhì, chỉ sau Io.[19][55][56]

Cấu trúc bên trong

Cấu trúc bên trong của Mặt trăng được phân tách thành ba thành phần khác biệt về mặt hóa địa chấtlớp vỏ, lớp phủlõi.[57]

Lõi của Mặt trăng có thể gồm hợp kim sắt với một lượng nhỏ lưu huỳnh và nickel, với bán kính khoảng từ 260 km đến dưới 375 km, chỉ chiếm cỡ 20% bán kính Mặt trăng, hoặc gồm silicat pha thêm sắt và titani, với bán kính lớn hơn một chút.[57][58][59] Lõi này có thể gồm phần lõi trong rắn chiếm khoảng 40% thể tích, và phần lõi ngoài nóng chảy chiếm khoảng 60% thể tích.[57][58][59]

Bao quanh lõi là phần trong của lớp phủ có bán kính khoảng 480 km đến 587 km, một phần cũng bị nóng chảy.[57][58] Cấu trúc lớp phủ ở tầng trên được cho là đã hình thành theo cơ chế kết tinh từ một đại dương dung nham tồn tại ngay sau khi Mặt trăng hình thành vào khoảng 4,5 tỷ năm trước.[57][8] Việc kết tinh phân đoạn đại dương dung nham đã tạo ra lớp phủ ultramafic có mật độ cao, chứa nhiều chất olivinpyroxene, nằm bên dưới một lớp vỏ plagioclase nhẹ hơn, nổi lên và bao phủ bề mặt toàn cầu.[57] Những phần chất lỏng cuối cùng hóa rắn nằm giữa lớp vỏ và lớp phủ, chứa nhiều các thành phần tỏa nhiệt và không tương thích nhau về mặt hóa địa chất.[57] Các mẫu đá Mặt trăng lấy từ các phần dung nham hóa rắn, vốn từng phun trào ra bề mặt từ vùng lớp phủ nóng chảy một phần, xác nhận thành phần lớp phủ ultramafic.[57]

Quá trình hình thành nêu trên tiên đoán ra lớp vỏ anorthosite, một kết quả phù hợp với các đo đạc tại chỗ và viễn thám.[57][60][61] Sau khi khoảng ba phần tư đại dương dung nham đã tinh thể hóa, các khoáng chất plagioclase nhẹ hơn bắt đầu hình thành và nổi lên trên tạo thành lớp vỏ.[57][62] Lớp vỏ dày khoảng 50 km.[57] Các mẫu đá trên vỏ Mặt trăng đều có tuổi từ 3,3 đến 4,4 tỷ năm, già hơn so với hầu hết đá Trái đất, và phù hợp với mô hình kết tinh đại dương dung nham.[63][57]

Thành phần lớp đất mặt.[64]
Hợp chất Công thức Thành phần
Biển Vùng cao
Silic dioxide SiO2 45,4% 45,5%
Nhôm oxit Al2O3 14,9% 24,0%
Calci oxit CaO 11,8% 15,9%
Sắt(II) oxit FeO 14,1% 5,9%
Magnesi oxit MgO 9,2% 7,5%
Titani dioxide TiO2 3,9% 0,6%
Natri oxit Na2O 0,6% 0,6%
  99,9% 100,0%
Giản đồ cấu trúc bên trong Mặt trăng.[58][57]


Bản đồ địa hình Mặt trăng.[65] Đặc trưng nổi bật ở nam mặt xa là Bồn địa Nam cực - Aitken - vùng trũng gần tròn, tô màu xanh tím.[66]
Bản đồ địa chất mặt gần Mặt trăng.[67] Màu đỏ ở bản đồ ứng với các vùng bazan của biển Mặt trăng.[67]
Niên đại địa chất Mặt trăng.[68]

Bề mặt

Địa hình Mặt trăng đã được đo bằng laserxử lý ảnh stereo.[69] Một đặc trưng địa hình nổi bật là bồn địa Nam cực - Aitken, ở phía nam mặt xa Mặt trăng, đường kính khoảng 2500 km, là hố va chạm lớn nhất trong số các hố va chạm đã được xác nhận ở hệ Mặt trời.[70][71] Bồn địa này cũng chứa điểm có độ sâu lớn nhất của Mặt trăng, sâu khoảng 13 km so với vùng xung quanh rìa.[70][65] Điểm cao nhất của Mặt trăng cũng nằm ngay rìa phía đông bắc của bồn địa này,[65] có thể được nâng cao lên do va chạm nghiêng của vụ va chạm hình thành nên bồn địa Nam Cực - Aitken.[72] Các bồn địa nổi bật khác, hình thành bởi các vụ va chạm lớn trong thời kỳ đầu của lịch sử Mặt trăng,[73][74] gồm có biển Mưa, Trong Sáng, Khủng Hoảng ở mặt gần[75][74]Đông Phương ở vùng ranh giới của hai mặt[74][73] - chúng đều có các vùng trung tâm với độ sâu lớn và phần rìa có độ cao lớn.[65][70] Mặt xa Mặt trăng có độ cao trung bình lớn hơn so với mặt gần cỡ 1,9 km.[57]

Liên đoàn Thiên văn Quốc tế khuyến nghị kinh tuyến gốc, của hệ tọa độ địa lý Mặt trăng, đi qua điểm trung tâm trung bình của mặt gần Mặt trăng.[76][77] Trong hệ tọa độ này, hố va chạm nhỏ bé mang tên Mösting A, có tọa độ 3,18°Nam, 5,16°Tây, cùng với một số đặc điểm địa hình khác, được dùng để đối chiếu vị trí vẽ bản đồ.[78][79]

Tàu quỹ đạo Trinh sát Mặt trăng năm 2010 đã phát hiện ra các vách đứt gãy dốc đứng trên bề mặt Mặt trăng, cho thấy rằng Mặt trăng có thể đã co ngót lại trong thời kỳ địa chất gần đây.[80] Các dấu hiệu co ngót tương tự cũng đã được quan sát thấy trên Sao thủy.[81] Một nghiên cứu thực hiện với 12000 bức ảnh chụp được từ tàu quỹ đạo cho thấy biển Lạnh ở gần cực bắc, một bồn địa vốn được cho là đã ngừng tiến hóa về mặt địa chất giống như các biển Mặt trăng khác, đang nứt và dịch chuyển.[82] Trên Mặt trăng không có các mảng kiến tạo,[57] cho nên hoạt động địa chất ở đây chỉ là sự hình thành các vết nứt chủ yếu do sự co ngót toàn cầu của Mặt trăng,[83] khi nó nguội dần,[62] và một phần do lực thủy triều.[83]

Biển và vùng cao

Các vùng trên bề mặt Mặt trăng có màu sẫm và tương đối bằng phẳng, như những đồng bằng, có ít các hố va chạm hơn, đủ lớn để có thể nhìn thấy bằng mắt thường từ Trái đất, được gọi là các biển Mặt trăng, vì trước đây đã có giả định rằng những vùng này có nước.[84][63] Giả thuyết được chấp nhận hiện tại cho rằng các vùng này vốn là các hồ chứa dung nham bazan cổ, nay đã đông cứng.[73] Bazan trên Mặt trăng tương tự như bazan ở Trái đất, gần giống phần vỏ dưới đại dương Trái đất hoặc dung nham phun trào từ núi lửa Trái đất,[73] nhưng không có các khoáng chất bị biến đổi bởi sự có mặt của nước.[57] Phần lớn các dung nham này đã phun trào ra bề mặt và chảy đến các vùng trũng ở các hố va chạm lớn thời kỳ đầu hình thành Mặt trăng.[73] Biển Mặt trăng hiện diện ở khoảng 17% diện tích Mặt trăng và hầu hết nằm ở mặt gần Mặt trăng;[73] biển ở mặt xa chỉ chiếm 1% bề mặt Mặt trăng.[85]

Một số biển ở mặt gần Mặt trăng chứa các vòm núi lửa, có thể được hình thành bởi dung nham phun trào với độ nhớt cao hơn.[86] Bản đồ hóa địa chất Mặt trăng, đo bởi phổ kế gamma của vệ tinh Lunar Prospector, cho thấy mặt gần Mặt trăng có nồng độ cao hơn các nguyên tố hóa học có khả năng sinh nhiệt nằm bên dưới lớp vỏ, gợi ý về khả năng vùng nằm dưới lớp vỏ này đã từng nóng hơn và dễ phun trào dung nham hơn, giải thích cho việc mặt gần có nhiều biển hơn.[62][87] Đa số bazan hình thành nên các biển nhỏ nằm xen kẽ giữa các vùng cao đã phun trào trong kỷ Mưa, 3,2–3,8 tỷ năm trước, còn riêng ở biển MưaĐại dương Bão, hoạt động phun trào đã kéo dài từ 4,2 đến khoảng 1 tỷ năm trước.[62] Theo một nghiên cứu định tuổi bằng phương pháp đếm hố va chạm ở vùng Đại dương Bão, dung nham trào lên bề mặt gần đây nhất là vào khoảng 1,2 tỷ năm trước.[88] Năm 2006, một nghiên cứu về hố va chạm Ina trong biển Hồ Hạnh Phúc đã tìm thấy các khu vực có đặc điểm trẻ, với tuổi chỉ khoảng 10 triệu năm.[89] Các trận động đất Mặt trăng và các vụ rò rỉ khí ga ra bề mặt cho thấy một số hoạt động địa chất của Mặt trăng vẫn tiếp tục.[89] Năm 2014, một nghiên cứu cho thấy nhiều bằng chứng về các hoạt động núi lửa mới trên Mặt trăng tại 70 vùng có hình dạng bất thường ghi nhận bởi Tàu quỹ đạo Trinh sát Mặt trăng, với tuổi ít hơn 100 triệu năm.[90] Có khả năng lớp phủ của Mặt trăng nóng hơn so với các số liệu đã được chấp nhận trước đây, ít nhất là ở mặt gần, tại những nơi có hàm lượng cao hơn các chất phóng xạ sinh nhiệt bên dưới lớp vỏ.[91][90] Lớp phủ nóng hơn và / hoặc hàm lượng cao hơn các chất sinh nhiệt trong lớp phủ nằm dưới bồn địa Đông Phương cũng có thể đã kéo dài hoạt động địa chất tại đây.[92]

Các khu vực có màu sáng hơn trên Mặt trăng được gọi là các vùng cao, bởi vì chúng có cao độ lớn hơn hầu hết các biển Mặt trăng.[57] Phương pháp đo tuổi bằng phóng xạ đã xác định các vùng cao hình thành vào khoảng 4,4 tỷ năm trước, có thể cấu tạo gồm các đá plagioclase tích lũy từ đại dương dung nham cổ của Mặt trăng, do nhẹ hơn nên nổi lên cao trong quá trình hình thành Mặt trăng từ rất sớm.[57][60] Tuổi đời cổ đại này của vùng cao phù hợp với quan sát về mật độ rất nhiều các hố va chạm ở đây, ứng với hàng tỷ năm hứng chịu các đợt va chạm của các mảnh vụn vũ trụ.[60] Khác với Trái đất, không có ngọn núi lớn nào trên Mặt trăng được cho là hình thành bởi sự dịch chuyển của các mảng kiến tạo.[63][57] Tổng diện tích các vùng cao chiếm 83% bề mặt Mặt trăng.[60]

Sự xuất hiện nhiều biển tại mặt gần và nhiều núi non ở mặt xa có thể được giải thích bởi một vụ va chạm ở tốc độ thấp giữa Mặt trăng với một vệ tinh tự nhiên thứ hai của Trái đất, chừng vài chục triệu năm sau khi hệ Trái đất và Mặt trăng hình thành.[54]


Các hố va chạm

Khi những tiểu hành tinhsao chổi va chạm với bề mặt Mặt trăng, các hố va chạm hình thành và gây ra tác động đáng kể đến bề mặt Mặt trăng.[93] Theo ước tính chỉ riêng mặt gần của Mặt trăng đã có khoảng 300.000 hố rộng hơn 1 km.[94] Niên đại địa chất Mặt trăng căn cứ vào những sự kiện va chạm nổi bật nhất ở bồn địa Mật Hoa, MưaĐông Phương,[95] và đại diện bởi tuổi của hố va chạm CopernicusEratosthenes.[96] Đây là những cấu trúc để lại các dấu hiệu địa tầng học qua các ảnh chụp, chẳng hạn như các mảnh văng từ hố va chạm Eratosthenes nằm bên trên nền biển xung quanh, và vật liệu bắn ra từ Copernicus lại chồng lên Eratosthenes.[96] Việc không có khí quyển, thời tiết và những quá trình địa chất gần đây đã giúp cho đa số các hố giữ nguyên trạng từ lúc được hình thành.[97] Chỉ có ít cấu trúc địa chất trên Mặt trăng được định tuổi chính xác bằng phương pháp đo đặc trưng đồng vị,[98] các khu vực còn lại được so sánh tuổi với các cấu trúc này, bằng các phương pháp khác, ví dụ như phương pháp đếm số hố va chạm.[99] Nếu giả định rằng các hố va chạm xuất hiện dần theo thời gian với tốc độ nhất định, như thể hiện ở hình bên, việc đếm số hố trên mỗi đơn vị diện tích, và so sánh số đếm này giữa các khu vực khác nhau, có thể giúp so sánh tuổi giữa chúng.[100]

Các hố va chạm trên Mặt trăng đều có hình tròn, không có hố lớn nào hình elip, do tốc độ cao của các mảnh vụn vũ trụ khi va chạm sẽ tạo ra hiệu ứng giống các vụ nổ, tác động đều ra mọi hướng xung quanh.[101] Khi mảnh va chạm lao xuống bề mặt, nó thâm nhập tới độ sâu khoảng 2 đến 3 lần đường kính mảnh va chạm, tạo ra sóng xung kích và nhiệt, làm nứt tầng đá nền bên dưới, và bốc hơi lớp silicat bề mặt.[102] Lớp đất bị bốc hơi giãn nở nhanh, tạo ra vụ nổ như bom hạt nhân, khoét một hố trên bề mặt có đường kính khoảng 10 đến 15 lần đường kính mảnh va chạm, và đẩy vật liệu ra rìa, tạo nên vành tròn ngoài dâng cao.[102] Sóng xung kích trong lớp vỏ phản hồi lại làm dâng đất đá điền vào hố, làm hố phẳng lại ở đáy, và đôi khi có phần nhô lên ở tâm.[102] Các vụ lở đất ở gần vành tạo nên các địa tầng.[102] Các mảnh vật liệu bị văng lên cao do vụ nổ sau đó rơi xuống, phủ lên vùng với đường kính cỡ gấp đôi đường kính hố va chạm.[102] Các mảnh lớn và tốc độ cao khi rơi xuống có thể tạo ra các hố va chạm nhỏ.[102]

Phủ bên trên bề mặt Mặt trăng là lớp đất mặt, gồm các vật liệu tán vụn, hình thành bởi các quá trình va chạm.[23] Theo thời gian chúng tiếp tục bị vỡ vụn thành những mảnh ngày càng nhỏ hơn.[23] Đất Mặt trăng có thành phần chiếm gần nửa là silica và các thành phần khác là một số oxit kim loại.[64][103] Lớp đất mặt của những bề mặt cổ tại vùng cao nhìn chung dày hơn, với độ dày 10-15 mét; trong khi tại các bề mặt trẻ ở biển, đất mặt chỉ dày 4-5 mét.[104] Bên dưới lớp đất mặt tán mịn là lớp các mảnh vỡ lớn văng ra từ các vụ va chạm và đá móng nứt gãy dày từ vài đến vài chục kilomet.[105] Bản thân lớp đất mặt cũng thường phân chia thành hai địa tầng: tầng trên nằm ngay ở bề mặt, dày cỡ vài đến vài chục xăngtimét, chứa các hạt đã được trộn đều, và tầng dưới có các lớp khác nhau chưa được trộn lẫn, hình thành từ các sự kiện va chạm khác nhau trong quá khứ.[106]

Tốc độ sản sinh các hố va chạm, trong khoảng 3 tỷ năm trở lại, là vào khoảng một hố đường kính 1km cho mỗi 200 nghìn năm, một hố đường kính 10km trong mỗi vài triệu năm, và khoảng một đến hai hố đường kính 100km trong mỗi tỷ năm.[107] Từ khoảng gần 4 tỷ năm về trước, tốc độ sản sinh các hố va chạm cao hơn gấp nhiều lần.[107] Nghiên cứu về tuổi đo bằng phóng xạ của đá nóng chảy do va chạm, thu thập từ các hố va chạm trong chương trình Apollo, gợi ý về sự kiện biến cố mặt trăng diễn ra khoảng 3,9 tỉ năm trước, với sự xuất hiện nhiều bất thường các tiểu hành tinh va chạm với các thiên thể ở vòng trong của Hệ mặt trời,[108] mặc dù có nghi vấn về giả thuyết này.[109]

Việc so sánh những hình ảnh do Tàu quỹ đạo Trinh sát Mặt trăng chụp cho thấy tốc độ sản sinh hố hiện tại nhanh hơn đáng kể ước tính trước đây, đặc biệt là với các hố va chạm nhỏ có kích cỡ trên chục mét.[110] Khi mỗi vụ va chạm xảy ra, những mảnh vật liệu nóng chảy hoặc bốc hơi văng ra ngoại biên với tốc độ cao, và chính chúng lại rơi xuống bề mặt.[111] Cơ chế này được cho là làm khuấy động hai xăngtimét lớp đất mặt trên cùng, ở thang thời gian 81.000 năm,[↓ 6] nhanh hơn một trăm lần so với các mô hình lý thuyết trước đây.[110]

Các vụ va chạm lớn và nhỏ đều làm bào mòn dần bề mặt Mặt trăng, khiến cho các núi non trên Mặt trăng có bề mặt nhẵn trơn, chứ không có các đỉnh nhọn lởm chởm như một số núi trẻ trên Trái đất.[60]
Vùng cao cổ đại của Mặt trăng với nhiều hố va chạm, chụp bởi các nhà du hành vũ trụ Apollo 11, NASA.[60]
Tốc độ sinh hố va chạm ở Mặt trăng theo thời gian.[32]

Các xoáy Mặt trăng

Các xoáy Mặt trăng là các vùng có đặc điểm địa lý kỳ dị nằm rải rác khắp bề mặt của Mặt trăng.[112] Chúng có suất phản chiếu cao hơn, có đặc điểm quang học của bề mặt mới hình thành gần đây và thường có các vùng tối nằm uốn lượn xen kẽ giữa các vùng hình xoáy sáng màu.[112] Tất cả các xoáy đều ứng với vùng từ trường mạnh hơn,[112] tuy nhiên không phải mọi vùng bất thường từ trường đều có xoáy.[112]

Xoáy Mặt trăng ở Reiner Gamma.[112]


Video thể hiện các vùng tối vĩnh cửu trên Mặt trăng, xây dựng dựa trên dữ liệu từ Cao độ kế Laser của Tàu quỹ đạo Trinh sát Mặt trăng.[113]
Phân bổ nước đá ở các cực Mặt trăng; bên trái là cực nam, bên phải là cực bắc.[114]

Hiện diện của nước

Nước lỏng không tồn tại trên bề mặt Mặt trăng.[6][115] Trong điều kiện ở bề mặt Mặt trăng, nước sẽ bị phân ly quang học thành các chất khác khi bị chiếu xạ cực tím từ Mặt trời.[116][117] Ngay cả nước ngậm trong đất đá cũng bị giải hấp bởi tia cực tím của Mặt trời.[116] Tuy nhiên, từ những năm 1960, đã có giả thuyết về sự tồn tại của nước đá ở các hố va chạm lạnh lẽo và luôn bị khuất trong bóng tối ở hai cực.[115] Trục quay của Mặt trăng đã ổn định trong vài tỷ năm trở lại đây,[118][119] và ở hai cực có những hố không nhận được ánh sáng Mặt trời trong suốt thời gian này, có thể chứa nước đá được mang đến bởi các sao chổi, gió Mặt trời hoặc thoát ra từ các tầng đá bên dưới.[120] Các mô phỏng trên máy tính năm 2003 gợi ý có khoảng 14.000 kilomét vuông diện tích Mặt trăng có thể nằm trong bóng tối vĩnh cửu.[121] Việc có được lượng nước đáng kể trên Mặt trăng ảnh hưởng quan trọng đến các kế hoạch định cư trên Mặt trăng của con người, do việc vận chuyển nước từ Trái đất lên Mặt trăng sẽ có thể quá tốn kém.[122]

Sự tồn tại của nước trên bề mặt Mặt trăng đã được khẳng định qua các quan sát gần đây.[6] Năm 1998, phổ kế neutron trên tàu vũ trụ Lunar Prospector cho thấy dấu hiệu hydro trong nước đá ở khoảng 40 xăngtimét lớp đất mặt của các hố tối vĩnh cửu gần cực.[123] Các hạt dung nham núi lửa được mang về từ Mặt trăng cũng đã cho thấy lượng nước nhỏ ở bên trong.[124] Tồn tại nước ở dạng liên kết hóa học trong đá Mặt trăng.[6] Tàu vũ trụ Chandrayaan-1 năm 2008 đã phát hiện sự tồn tại của nước ở cả các bề mặt được chiếu sáng bởi Mặt trời, bằng phổ kế mang tên Máy vẽ Bản đồ Khoáng vật học Mặt trăng (M3), khi đo các vạch hấp thụ của hydroxyl và/hoặc nước.[125] Năm 2009, LCROSS đã đưa một tên lửa hết nhiên liệu đâm xuống vùng tối vĩnh cửu trong hố va chạm Cabeus gần cực, và đã phát hiện khoảng 155 ± 12 kg nước ở trong luồng khói bụi bốc lên từ vụ va chạm.[126]

Năm 2011, 615 đến 1410 ppm nước trong bao thể nóng chảy của mẫu đá chứa dung nham cổ đại ở Mặt trăng đã được tìm thấy, cho thấy một phần lõi của Mặt trăng có hàm lượng nước tương đương với lớp phủ trên của Trái đất.[127] Việc phân tích lại dữ liệu phổ phản xạ của máy đo M3 vào năm 2018 đã khẳng định sự tồn tại của nước đá trong vòng vĩ độ 20° ở cả hai cực.[114] Dữ liệu cho thấy ánh sáng phản xạ đặc trưng của nước đá, khác hẳn so với ánh sáng từ hydroxyl, nước ở thể khác, hay các bề mặt phản xạ khác.[114] Nước đá có nhiều hơn ở cực Nam, tại các khu vực tồn tại lâu dài nhất trong bóng tối.[114] Tàu quỹ đạo Trinh sát Mặt trăng xác nhận sự tồn tại của các hố tối vĩnh cửu rất lạnh này, với các ảnh chụp nhờ ánh sáng của các sao.[6] Tổng lượng nước ở các hố này vào khoảng hàng trăm tỷ tấn.[6]

Cuối năm 2020, các nhà thiên văn phát hiện phân tử nước ở phần bề mặt được chiếu sáng của Mặt trăng bằng thiết bị SOFIA.[128] Những khe hở nhỏ khuất tối trong đất đá, ở cả vùng đất được chiếu sáng không quá xa cực, được cho là có thể bảo quản nước và chiếm tới khoảng 10–20% diện tích tối vĩnh cửu của Mặt trăng.[129][128]


Trường hấp dẫn

Trường hấp dẫn của Mặt trăng đã được đo từ những năm 1960 thông qua ảnh hưởng lên quỹ đạo của các tàu không gian gần Mặt trăng, với gia tốc của các tàu được xác định nhờ dịch chuyển Doppler của sóng vô tuyến liên lạc giữa tàu và Trái đất.[130] Tàu Lunar Prospector đã vẽ bản đồ trọng trường ở mặt gần vào những năm 1998-1999.[131] Năm 2013, bản đồ trường hấp dẫn cho toàn bộ bề mặt Mặt trăng đã được thiết lập chi tiết bởi cặp tàu quỹ đạo GRAIL.[132] Gia tốc trọng trường của Mặt trăng có những vùng cực đại địa phương ở tại một số bồn địa va chạm khổng lồ, một phần gây ra bởi mật độ khối lượng lớn của các dòng dung nham bazan biển lấp đầy những bồn địa đó.[130][132][133][131] Tuy vậy, chỉ riêng dòng dung nham không thể giải thích tất cả dấu hiệu trọng lực và một số điểm tập trung trọng trường không nằm gần khu vực có hoạt động núi lửa ở biển Mặt trăng.[131]

Gia tốc trọng trường trung bình trên bề mặt Mặt trăng là 1,63 m/s2, khoảng một phần sáu so với gia tốc trọng trường Trái đất.[22] Một bộ đồ phi hành gia Apollo 11 với hệ thống cung cấp dưỡng khí tổng cộng 91,3 kg[134] sẽ chỉ tạo cảm giác nặng giống như khoảng 15 kg trên Trái đất. Tốc độ thoát khỏi Mặt trăng (tốc độ vũ trụ cấp 2) chỉ là 2,38 km/s so với 11,2 km/s ở Trái đất.[22]

Từ trường

Mặt trăng có một từ trường ngoài với cường độ hầu hết dưới 0,2 nanotesla, chưa bằng một phần một trăm ngàn từ trường Trái đất.[7] Hiện tại Mặt trăng không có từ trường lưỡng cực toàn cầu mà chỉ có lớp vỏ đã từ hóa, có thể là hệ quả của thời kỳ lịch sử khi vẫn còn tồn tại một dynamo hoạt động ở quy mô toàn cầu.[135][7] Khoảng 4,25 đến 3,56 tỉ năm trước từ trường Mặt trăng có khả năng mạnh gần bằng từ trường Trái đất ngày nay.[7] Trường dynamo thời đầu này có thể đã kéo dài đến cách đây khoảng 1,92 đến 0,80 tỉ năm, nhờ các dòng đối lưu hoạt động khi lõi Mặt trăng kết tinh.[7] Trên lý thuyết, một số vùng từ hóa còn sót lại có thể được gây ra bởi từ trường thoáng qua của những đám mây plasma giãn nở trong những vụ va chạm lớn.[136] Khi những đám mây này xuất hiện ở các vụ va chạm lớn, Mặt trăng vẫn đang có một nền từ trường đáng kể.[136] Giả thuyết này được hỗ trợ bởi vị trí từ hóa mạnh nhất trên vỏ nằm gần điểm đối chân của những bồn địa va chạm lớn.[136]

Khí quyển

Mặt trăng có khí quyển rất loãng đến nỗi các hạt khí gần như không va chạm với nhau, giống tầng ngoài khí quyển hành tinh,[137] với tổng khối lượng được ước lượng là từ chưa đến 10 tấn[138] đến khoảng 30 tấn.[139] Các thiết bị của các tàu đổ bộ Apollo đo được mật độ hạt khí quyển khoảng 107 hạt/cm3 vào ban ngày và cỡ 105 hạt/cm3 vào ban đêm ở bề mặt Mặt trăng, gần như chân không so với khí quyển Trái đất (1019 hạt/cm3).[140][137] Khí quyển bao gồm các chất khí thoát ra từ đất đá[141][139] và khí sinh ra từ hoạt động phún xạ do gió mặt trời và bụi vũ trụ bắn phá thổ nhưỡng Mặt trăng.[61][140] Các nguyên tố được phát hiện có natrikali sinh ra do phún xạ và giải hấp nhiệt (cũng có trong khí quyển Sao thủy và Io); helium-4neon chủ yếu từ gió mặt trời; argon-40, radon-222 và các đồng vị poloni được tạo ra bởi giải hấp nhiệt hoặc thoát khí sau khi hình thành từ phân rã phóng xạ trong lớp vỏ và lớp phủ.[137][141][142] Tổng mật độ của các nguyên tố trên vẫn còn nhỏ hơn nhiều mật độ khí quyển Mặt trăng, do đó các nhà khoa học vẫn đang tìm kiếm sự hiện diện của những phân tử và nguyên tử khác ở khí quyển, đặc biệt là các chất mà có thể được sinh ra từ lớp đất mặt.[137] Chandrayaan-1 đã phát hiện hơi nước với nồng độ thay đổi theo vĩ độ, nhiều nhất tại khoảng 60–70 độ.[143] Hơi nước có thể được sinh ra từ sự thăng hoa nước đá ở lớp đất mặt.[143] Những khí này quay lại lớp đất mặt do trọng lực của Mặt Trăng hoặc biến mất vào không gian do áp lực bức xạ mặt trời hoặc nếu chúng bị ion hóa thì bị thổi bay bởi từ trường gió mặt trời.[137][140]
Bản đồ trọng lực bề mặt Mặt trăng của GRAIL.[132] Vùng màu đỏ là trọng trường mạnh, màu xanh là trọng trường yếu hơn.[132]
Tổng cường độ từ trường ở bề mặt Mặt trăng, theo kết quả thí nghiệm phản xạ kế điện tử Lunar Prospector.[144]

Cát bụi

Có một đám mây bụi bất đối xứng bao quanh Mặt trăng, được tạo ra do hoạt động của các hạt bụi sao chổi.[145] Ước chừng khoảng 0,1 đến 0,6 picôgam bụi sao chổi bay vào mỗi mét vuông bề mặt vùng xích đạo Mặt trăng mỗi giây, với tốc độ khoảng 20 kilômét trên giây.[145] Các hạt này va đập lên bề mặt và làm bụi ở bề mặt Mặt trăng bắn lên, với tốc độ đại diện khoảng vài trăm mét trên giây, rồi rơi trở lại bề mặt.[145] Trung bình, lớp bụi bay lơ lửng trên bề mặt Mặt trăng có tổng khối lượng khoảng 120 kilogam, dày hàng trăm kilomét.[145] Các phép đo bụi đã được thực hiện bởi Thí nghiệm Bụi Mặt trăng (LDEX) của LADEE, trong khoảng 6 tháng với độ cao từ gần bề mặt đến trên 200 km.[145] LDEX đo được trung bình có một hạt bụi cỡ 0,3 micromét trong mỗi phút.[145] Số lượng hạt bụi tăng lên vào các đợt có mưa sao băng Geminid, Quadrantid, TauridOmicron Centaurid, khi Trái đất và Mặt trăng đi ngang qua những đám tàn tích sao chổi.[145] Đám mây bụi của Mặt trăng bất đối xứng, có mật độ cao hơn ở đường biên giữa nửa ban ngày và nửa ban đêm của Mặt trăng.[145]

Các nhà du hành vũ trụ đặt chân lên Mặt trăng trong chương trình Apollo đã chứng kiến những quầng sáng gần đường chân trời trước lúc bình minh, một hiện tượng cũng được quan sát bởi một số vệ tinh và tàu đổ bộ, có thể được gây ra bởi lớp bụi ở trên cao hoặc do các khí natri và kali của khí quyển.[137]

Khí quyển trong quá khứ

Năm 2017, một nghiên cứu dựa trên mô hình phun trào dung nham theo thời gian cho thấy một khí quyển khá dày của Mặt trăng trong khoảng thời gian dài cỡ 70 triệu năm, giữa 3 và 4 tỷ năm trước.[146] Khí quyển này chứa các khí sinh ra bởi các vụ phun trào núi lửa Mặt trăng và có áp suất khoảng gấp rưỡi so với khí quyển Sao hỏa ngày nay.[146] Bầu khí quyển cổ đại này đã bị mất dần vào không gian chủ yếu do chuyển động nhiệt của các hạt khí với tốc độ đạt trên tốc độ vũ trụ cấp 2.[146]
Minh họa nghệ thuật cho vệ tinh LADEE đo bụi Mặt trăng, bay gần bề mặt vào hoàng hôn, với quầng sáng gây ra bởi tán xạ của tầng bụi.[147]

Chuyển động và mùa

Mặt trăng tự quay quanh trục với chu kỳ phụ thuộc vào hệ quy chiếu: so với nền sao ở xa, chu kỳ này là chu kỳ sao,[148][149] 27,3 ngày Trái đất,[150][151] còn so với Mặt trời thì chu kỳ này là chu kỳ giao hội,[152][149] 29,5 ngày Trái đất.[151] Đối với quan sát viên đứng yên trên bề mặt Mặt trăng, Mặt trời mọc và lặn theo chu kỳ đúng bằng chu kỳ giao hội.[149] Mặt trăng quay quanh Trái đất và bị khóa thủy triều so với Trái đất,[4][153] khiến cho chu kỳ sao của chuyển động tự quay của Mặt trăng đúng bằng chu kỳ quỹ đạo của Mặt trăng quanh Trái đất,[154][153] và chu kỳ giao hội tự quay cũng bằng chu kỳ giao hội quỹ đạo (còn gọi là "tháng giao hội").[155] Chu kỳ giao hội quỹ đạo cũng là chu kỳ pha Mặt trăng khi quan sát từ Trái đất (còn gọi là "tuần trăng").[12][155]

Độ nghiêng trục quay của Mặt trăng so với hoàng đạo chỉ là 1,54°,[156] nhỏ hơn nhiều so với 23,5° của Trái đất.[157] Do đó bức xạ Mặt trời lên Mặt trăng cũng ít thay đổi theo mùa hơn, ngoại trừ tại vùng gần cực, nơi mà yếu tố địa hình và yếu tố mùa đều có ảnh hưởng.[156]

Năm 2005, một phân tích về các ảnh chụp bởi tàu vũ trụ Clementine cho thấy các khu vực nhiều núi non ở vành hố va chạm Peary tại cực bắc có thể được chiếu sáng trong toàn bộ cả ngày Mặt trăng, tạo ra những đỉnh núi sáng vĩnh cửu.[158] Các nghiên cứu sau này, từ 2005 đến 2013, cho rằng vùng rìa Peary có thể bị che khuất vào mùa đông, tuy nhiên xác nhận nhiều địa điểm ở vùng này và rìa hố va chạm khác gần hai cực có tỷ lệ nhận sáng từ 80% đến trên 90% trung bình năm, bao gồm rìa hố Shackleton gần cực nam.[159] Tương tự, có nhiều khu vực nằm mãi mãi trong bóng tối ở đáy của những hố va chạm gần cực,[121][159] và các "hố tối vĩnh cửu" này cực lạnh.[156]

Tuy có thể tính được nhiệt độ trung bình bề mặt của Mặt trăng, nhưng nhiệt độ thực tế ở từng địa điểm có thể lệch so với mức trung bình hàng chục độ K, tùy theo điều kiện địa hình (độ dốc, bóng râm, kiến trúc tán xạ ánh sáng và nhiệt), độ phản xạ sáng và bức xạ hồng ngoại của bề mặt địa phương, và tính chất nhiệt (nhiệt dung, độ dẫn nhiệt) của khu vực.[156] Do thiếu khí quyển hay thủy quyển để ổn nhiệt, nhiệt độ bề mặt thay đổi mạnh trong ngày của Mặt trăng.[23][156] Vào giữa trưa, nhiệt độ của đất đá màu sẫm có thể lên trên 100°C; còn trong ban đêm (kéo dài khoảng hai tuần, tương đương với thời lượng ban ngày của Mặt trăng), nhiệt độ đất xốp giảm xuống khoảng -180°C.[158][23] Nơi có nhiệt độ ổn định và không quá lạnh là các đỉnh núi sáng vĩnh cửu gần cực, khoảng -50±10°C, được cho là phù hợp để định cư vì dễ tiếp cận năng lượng Mặt trời và nguồn nước đá ở các hố tối vĩnh cửu gần đó.[158]


Hệ Trái đất - Mặt trăng

Mô hình thu nhỏ của Hệ Trái đất - Mặt trăng: kích thước và khoảng cách trung bình theo đúng tỷ lệ.
Mô hình thu nhỏ của Hệ Trái đất - Mặt trăng: kích thước và khoảng cách trung bình theo đúng tỷ lệ.[18]
Khoảng cách và kích thước góc Mặt trăng thay đổi theo chuyển động trên quỹ đạo, từ cận điểm gần nhất sang viễn điểm xa nhất.
Khoảng cách và kích thước góc Mặt trăng thay đổi theo chuyển động quanh Trái đất, từ cận điểm gần nhất sang viễn điểm xa nhất.[161][162][163][164][↓ 7]

Quỹ đạo

Hệ Mặt trăng và Trái đất quay quanh khối tâm nằm ở dưới bề mặt Trái đất khoảng 1.700 km (khoảng một phần tư bán kính Trái đất), theo các quỹ đạo gần giống hình elip có độ lệch tâm nhỏ.[165] So với nền các ngôi sao ở xa, hệ này quay hết đúng một vòng trong chu kỳ quỹ đạo (hay "tháng vũ trụ", "tháng sao") là 27,3 ngày.[166][3][↓ 8] Do khối tâm của hệ chuyển động trên quỹ đạo quanh Mặt trời, nên để Mặt trăng quay trở lại cùng một pha, cần khoảng thời gian lâu hơn là chu kỳ giao hội quỹ đạo (hay "tháng giao hội", "tuần trăng") 29,5 ngày.[3][12][↓ 9] Nếu nhìn từ cực bắc, hệ Mặt trăng-Trái đất quay theo chiều ngược kim đồng hồ, trùng chiều quay của hệ quanh Mặt trời và chiều quay trên quỹ đạo của các hành tinh khác trong Hệ Mặt trời, đồng thời cũng là chiều tự quay của Trái đất, Mặt trăng và hầu hết các hành tinh này.[167][3] Mặt phẳng quỹ đạo của hệ, còn gọi là mặt phẳng bạch đạo, không lệch nhiều so với mặt phẳng quỹ đạo của hệ quanh Mặt trời, còn gọi là mặt phẳng hoàng đạo,[15][162] và cũng không lệch nhiều so với mặt phẳng quỹ đạo của các hành tinh khác trong Hệ Mặt trời.[167] Trong khi đó, khoảng một phần ba trong số các vệ tinh tự nhiên khác trong hệ Mặt trời chuyển động trên quỹ đạo nằm gần mặt phẳng xích đạo của hành tinh mà chúng quay quanh theo cùng chiều quay,[168] đa số lệch nhiều so với mặt phẳng hoàng đạo,[169] và phần lớn các vệ tinh khác quay ngược chiều hành tinh theo các quỹ đạo bất thường và cách xa hành tinh.[168]

Các pha của Mặt trăng.
Các pha Mặt trăng: trăng tròn (rằm) ở giữa, khi Mặt trăng ở đối diện Mặt trời qua Trái đất; trăng non (không trăng), ở ngoài cùng hai bên, khi Mặt trăng ở cùng phía Mặt trời; trạng thái trung gian là trăng khuyết, bán nguyệt, lưỡi liềm.[170][26] Do hệ Trái đất-Mặt trăng chuyển động quanh Mặt trời, từ trái qua phải trên hình, để Mặt trăng quay trở lại cùng một pha, cần khoảng thời gian là chu kỳ giao hội quỹ đạo, lâu hơn so với chu kỳ quỹ đạo;[12] với chênh lệch thể hiện bằng cung màu xanh nõn chuối ở ngoài cùng bên phải trên hình.[171]

Quỹ đạo của Mặt trăng bị gây nhiễu bởi Mặt trời, Trái đất, và ở mức độ ít hơn là các hành tinh, khiến cho tất cả các thông số của quỹ đạo, như độ nghiêng, độ lệch, bán trục lớn, điểm nút, củng điểm ... đều biến động nhỏ một cách tuần hoàn và phức tạp.[164][172][173] Ví dụ, mặt phẳng quỹ đạo của Mặt trăng tiến động theo chu kỳ 18,6 năm, và ảnh hưởng đến các khía cạnh khác của chuyển động, thể hiện ở các công thức toán học trong các định luật Cassini.[174] Ví dụ khác là độ lệch tâm quỹ đạo của Mặt trăng thay đổi theo chu kỳ 206 ngày, khiến cho cận điểm và viễn điểm quỹ đạo của Mặt trăng cũng biến động theo chu kỳ này.[164]

Khoảng cách từ tâm Trái đất đến Mặt trăng biến đổi theo chu kỳ quỹ đạo 27,3 ngày, chồng lên chu kỳ thay đổi của độ lệch tâm quỹ đạo 206 ngày.
Vì quỹ đạo elip, khoảng cách từ tâm Trái đất đến tâm Mặt trăng biến đổi theo chu kỳ quỹ đạo 27,3 ngày, chồng lên chu kỳ thay đổi của độ lệch tâm quỹ đạo 206 ngày.[164][175][176] Khoảng cách tới củng điểm quỹ đạo thay đổi theo độ lệch tâm quỹ đạo; với cận điểm gần nhất ở khoảng 356400km, xa nhất ở khoảng 370400km; viễn điểm gần nhất khoảng 404000km, xa nhất khoảng 406700km.[164][175][176] Các chấm tròn trên đồ thị ứng với các thời điểm trăng tròn.[175][176]

Tương quan kích thước

Xét tương quan với Trái đất, Mặt trăng là một vệ tinh tự nhiên lớn lạ thường:[177] nó có đường kính bằng khoảng một phần tư[18] và khối lượng bằng 1/81 Trái đất.[5] Mặt trăng là vệ tinh lớn nhất trong Hệ Mặt trời nếu so tương quan với kích cỡ hành tinh của chúng, dù vậy Charon có kích thước trên một nửa hành tinh lùn Pluto.[178] Mặt trăng chiếm phần lớn mômen động lượng của hệ Trái đất - Mặt trăng,[177] và khiến Trái đất quay quanh khối tâm Trái đất-Mặt trăng một lần một tháng vũ trụ[166] với tốc độ bằng 1/81 Mặt trăng hay khoảng 12,5 m/s.[179][165] Chuyển động này chồng lên chuyển động quay của Trái đất quanh Mặt trời với tốc độ lớn hơn nhiều khoảng 30 km/s.[180]


Thủy triều

Theo định luật vạn vật hấp dẫn, lực hấp dẫn giữa hai vật thể giảm dần theo bình phương khoảng cách giữa chúng.[181] Do vậy, với hệ hai thiên thể ở cạnh nhau, phần bề mặt trên thiên thể này nằm gần thiên thể kia hơn sẽ chịu lực hút mạnh hơn một chút so với phần nằm xa.[182] Chênh lệch lực hút này tạo ra lực thủy triều.[182] Đối với hệ Trái đất - Mặt trăng, lực thủy triều bóp méo cả Trái đất và Mặt trăng, gây ra nhiều hiệu ứng quan sát được.[183]

Nếu Mặt trăng từng tự quay quanh trục của nó với tốc độ nhanh hơn hoặc chậm hơn tốc độ hiện tại, lực thủy triều làm tốc độ này thay đổi dần cho đến khi chu kỳ tự quay đúng bằng chu kỳ quỹ đạo quanh Trái đất, khiến Mặt trăng luôn hướng một mặt về Trái đất - được gọi là bị khóa đồng bộ (hay khóa thủy triều, đồng bộ thủy triều).[153][183][178] Nguyên nhân là lực thủy triều bởi Trái đất làm biến dạng Mặt trăng liên tục nếu nó vẫn còn quay so với phương nối đến Trái đất, gây nên ma sát trong lòng Mặt trăng tiêu hao năng lượng quay này, tạo thành mômen lực cản.[153] Qua thời gian cỡ hàng ngàn năm, trong hệ quy chiếu gắn với phương nối đến Trái đất, động năng quay của Mặt trăng biến mất vì đã chuyển hóa hết thành nhiệt năng, Mặt trăng không còn chuyển động quay so với phương nối đến Trái đất và luôn có một mặt hướng về Trái đất.[153] Ở trạng thái khóa thủy triều cân bằng bền, thế năng Mặt trăng nhỏ nhất và Mặt trăng chỉ có thể nằm theo một trong hai tư thế cố định đối xứng nhau qua tâm.[153] Ngày nay Mặt trăng ở tư thế với khối tâm nằm cách tâm hình học khoảng 1,8km về phía gần Trái đất hơn.[177] Vào năm 2016, các nhà khoa học hành tinh sử dụng dữ liệu thu thập bởi vệ tinh Lunar Prospector từ năm 1998 và phát hiện hai vùng giàu hydro (khả năng năng cao từng là các vùng có nước đá) trên hai mặt đối diện của Mặt trăng.[184] Có thể hai mảng này là hai cực của Mặt trăng cách đây hàng tỉ năm trước, ở tư thế khóa thủy triều cân bằng bền với phân bổ khối lượng trong lòng Mặt trăng khác hiện nay.[184]

Mặt trăng cũng tạo ra lực thủy triều trên Trái đất, tác động lên cả đại dương và lớp vỏ đất đá của Trái đất.[16] Hiệu ứng rõ rệt nhất là làm đại dương có hình ellipsoid với hai "bướu", một bướu nằm gần Mặt trăng, và bướu kia nằm đối diện.[16] Khi Trái đất tự quay trong đại dương hình ellipsoid này, đại dương sẽ dâng lên và hạ xuống so với một điểm trên bề mặt đất đá của Trái đất, tạo ra hiện tượng thủy triều đại dương.[16] Trong vòng khoảng 24 giờ, có hai lần thủy triều dâng cao và hai lần thủy triều hạ thấp.[16] Chính xác hơn, thủy triều dâng cao sau mỗi 12,5 tiếng đồng hồ, với khoảng nửa tiếng cộng thêm vào là do Mặt trăng, và do đó các bướu đại dương, cũng quay cùng chiều với Trái đất ở tốc độ chậm hơn.[182] Mặt trời cũng gây ra hiện tượng thủy triều trên Trái đất, nhưng lực thủy triều của Mặt trời chỉ bằng khoảng một nửa so với Mặt trăng.[183] Tổng hợp tác động của lực thủy triều Mặt trăng và Mặt trời làm thay đổi phạm vi thủy triều với chu kỳ tuần hoàn khoảng hai tuần.[16] Nếu Trái đất không có lục địa, chỉ toàn đại dương, thủy triều sẽ dễ tiên đoán, với phạm vi thủy triều khoảng một mét.[16] Tuy nhiên, trên thực tế, phạm vi thủy triều phụ thuộc ma sát giữa đại dương với đáy biển, địa hình các bồn trũng đại dương, và các yếu tố khác.[16]

Lực thủy triều cũng gây ra các "bướu" ở phần lõi và vỏ đất đá của Trái đất, với phạm vi chỉ khoảng 20 cm.[16] Khác với đại dương, nơi mà lực thủy triều gây ra chuyển động của các khối chất lỏng,[16] phần lõi và vỏ đất đá của Trái đất bị nhào bóp một cách đàn hồi và dẻo dưới tác động của lực thủy triều.[185] Ma sát trong các khối đại dương chuyển động dưới lực thủy triều, và ở mức độ nhỏ hơn là ma sát trong chuyển động dẻo của lõi đất đá, làm tiêu tán dần năng lượng tự quay của Trái đất, khiến ngày Trái đất dài thêm khoảng 0,002 giây sau mỗi thế kỷ.[185][17] Một nghiên cứu vào năm 2016 gợi ý về khả năng lực thủy triều đã giúp duy trì từ trường Trái đất, do động năng và thế năng của hệ Trái đất-Mặt trăng-Mặt trời đã chuyển hóa thành nhiệt năng và động năng ở lõi Trái đất bởi sự nhào bóp của thủy triều, làm ổn định nhiệt độ cao và khả năng sinh ra từ trường của lõi.[186] Do bảo toàn mô men động lượng trong hệ Trái đất - Mặt trăng, phần mô men động lượng mất đi ở chuyển động tự quay của Trái đất được chuyển hóa sang mô men động lượng của Mặt trăng, làm quỹ đạo Mặt trăng tăng dần độ cao với tốc độ quỹ đạo giảm dần.[17] Thí nghiệm đo khoảng cách Mặt trăng bằng cách chiếu laser lên các tấm hồi phản được chương trình Apollo lắp đặt trên bề mặt Mặt trăng cho thấy khoảng cách tới Mặt trăng tăng với tốc độ 38 mm mỗi năm (cỡ tốc độ mọc của móng tay người).[17][187]

Nếu quá trình này tiếp tục diễn ra, chu kỳ tự quay của Trái đất sẽ dài ra đến khi bằng với chu kỳ quỹ đạo của chuyển động quay quanh nhau của hệ Trái đất - Mặt trăng, tạo ra khóa thủy triều ở cả hai thiên thể.[17] Khi đó Mặt trăng sẽ đứng yên tại một kinh tuyến, như một vệ tinh địa tĩnh, giống như trường hợp của Pluto và Charon hiện nay.[17] Tuy nhiên, trong tương lai, Mặt trời sẽ trở thành một sao đỏ khổng lồ và sẽ nuốt chửng hệ Trái đất - Mặt trăng trước khi hiện tượng khóa thủy triều ở cả hai thiên thể này xảy ra.[188][189]

Hiện tại, Mặt trăng vẫn chịu tác động nhỏ của lực thủy triều gây ra bởi Trái đất và Mặt trời.[190] Phạm vi thủy triều trên Mặt trăng là 10 cm và biến đổi chủ yếu theo chu kỳ 27 ngày, với hai thành phần: thành phần theo phương hướng đến Trái đất và gây ra bởi Trái đất, vì Mặt trăng đã bị khóa thủy triều trong quỹ đạo đồng bộ, và thành phần nhỏ hơn gây bởi Mặt trời.[190] Thành phần gây bởi Trái đất là do sự bình động của Mặt trăng, vì quỹ đạo của Mặt trăng có độ lệch tâm.[191][190] Nếu quỹ đạo của Mặt trăng tròn hoàn hảo thì chỉ có thành phần lực thủy triều gây ra bởi Mặt trời.[191] Thành phần gây bởi Mặt trời là nhỏ và biến đổi theo một số chu kỳ khác nữa, như chu kỳ 2 tuần, 1 tháng, 7 tháng, 1 năm, 6 năm, 18,6 năm.[190] Ứng suất tích lũy từ các lực thủy triều gây ra các đợt động đất ở sâu trong lòng Mặt trăng, đo được bởi các địa chấn kếchương trình Apollo đặt trên Mặt trăng.[192][193] Động đất Mặt trăng ít xảy ra hơn, có cường độ yếu hơn so với động đất trên Trái đất, nhưng có thể kéo dài hàng giờ, do không có thủy quyển hấp thụ.[192][193][177] Ngoài động đất sâu do thủy triều, xảy ra theo các đợt với chu kỳ 27 ngày, còn có động đất nông ở các vùng địa chất yếu gần vỏ và động đất do va chạm với thiên thạch, xảy ra ngẫu nhiên theo thời gian.[193][83]

Lực thủy triều do Mặt trăng gây ra ở mỗi điểm trên Trái đất có thể coi như chênh lệch lực hấp dẫn của Mặt trăng tại điểm đó so với tại tâm Trái đất.[182]
Ngày nay, hiện tượng bình động của Mặt trăng gây ra chênh lệch lực hấp dẫn từ Trái Đất, tạo hiệu ứng thủy triều bởi Trái đất cho Mặt trăng.[191]


Nhìn từ bán cầu bắc, cực bắc Mặt trăng ở phía trên; nhìn từ bán cầu nam, Mặt trăng sẽ lộn ngược với cực bắc ở quay xuống dưới.[194]
So sánh kích thước biểu kiến: bên trái là Mặt trời, bên phải là Mặt trăng; bên dưới ở cận điểm gần nhất, bên trên ở viễn điểm xa nhất - Mặt trăng ở cận điểm gần nhất trông lớn hơn 14% so với ở viễn điểm xa nhất và lớn hơn Mặt trời.[195][196]

Diện mạo nhìn từ Trái đất

Do khóa thủy triều, Mặt trăng luôn luôn duy trì gần như một mặt hướng về Trái đất.[183] Tuy nhiên bởi hiệu ứng bình động, từ Trái đất thực tế có thể quan sát khoảng 59% bề mặt Mặt trăng.[3][13] Mặt đối diện Trái đất được gọi là mặt gần (hay "mặt trước") còn mặt kia là mặt xa (hay "mặt khuất", "mặt sau").[3][197][25][198] Mặt xa thỉnh thoảng bị gọi không chính xác là "mặt tối" nhưng thực tế nó được soi sáng thường xuyên như mặt gần theo chu kỳ 29,5 ngày.[197] Mặt gần tối vào kỳ trăng non (hay pha "không trăng").[170]

Mặt trăng có suất phản chiếu thấp khác thường, gần tương đương nhựa đường.[199][200] Mặc dù vậy ở pha trăng tròn, Mặt trăng là vật thể sáng thứ hai trên bầu trời sau Mặt trời,[26] một phần do sự tăng cường ánh sáng phản xạ ở góc hướng về phía Mặt trời bởi hiệu ứng xung đối.[201] Hiệu ứng xung đối, một đặc tính phản xạ của đất xốp và bề mặt gồ ghề,[177][201] làm cho Mặt trăng tại pha bán nguyệt chỉ sáng bằng một phần mười trăng tròn chứ không phải một nửa,[199] và phần ngoài rìa trăng tròn sáng gần bằng ở tâm, tức là không có hiệu ứng rìa tối.[177] Mắt người cảm nhận Mặt trăng là vật thể sáng trên nền trời xung quanh tối, khi nó được Mặt trời chiếu rọi, còn do cơ chế bất biến mức sáng trong hệ thống thị giác tự động hiệu chỉnh quan hệ màu sắc và độ sáng với môi trường.[202] Mặt trăng trông lớn hơn khi gần đường chân trời nhưng đây hoàn toàn là hiệu ứng tâm lý gọi là ảo ảnh mặt trăng được mô tả lần đầu vào thế kỷ 7 trước công nguyên.[203] Trăng tròn trên bầu trời có đường kính góc trung bình khoảng hơn 31 phút cung và kích cỡ biểu kiến gần tương đương Mặt trời.[195]

Độ cao lớn nhất của Mặt trăng tại trung thiên thay đổi theo pha và thời gian trong năm.[204] Trăng tròn cao nhất trên bầu trời vào mùa đông đối với cả hai bán cầu.[204] Sự định hướng của hình ảnh Mặt trăng ở pha không tròn, thể hiện rõ ở hướng của đường ranh giới sáng tối, phụ thuộc vào vĩ độ của địa điểm quan sát.[205][206] Người ở bán cầu nam nhìn hình Mặt trăng lộn ngược so với người ở bán cầu bắc của Trái đất.[194] Một người quan sát ở miền nhiệt đới có thể thấy trăng lưỡi liềm hình mặt cười.[205] Tại hai cực Bắc và Nam, Mặt trăng mọc trên bầu trời liên tục trong gần hai tuần, rồi biến mất liên tục trong gần hai tuần, rồi lặp lại như vậy, theo chu kỳ 27,3 ngày.[205]vùng Bắc Cực vào mùa đông, khi Mặt trời nằm phía dưới đường chân trời, sinh vật phù du di cư theo chiều thẳng đứng, với chu kỳ hằng ngày - 24,8 giờ đồng hồ - của ánh sáng Mặt trăng, và chu kỳ hàng tháng - 29,5 ngày - của pha Mặt trăng.[207] Chu kỳ hằng ngày của ánh sáng Mặt trăng dài hơn 24 giờ thông thường do Mặt trăng quay cùng chiều với chiều quay của Trái đất; điều này khiến cho, vào mỗi ngày, Mặt trăng mọc muộn hơn ngày trước khoảng 0,8 giờ đồng hồ.[26][204]

Khoảng cách giữa Mặt trăng và Trái đất thay đổi từ khoảng 356.400 km tại cận điểm gần nhất đến 406.700 km tại viễn điểm xa nhất, chênh nhau 14%.[164] Nếu Mặt trăng nằm tại cận điểm gần nhất đồng thời đang ở pha trăng tròn thì nó được gọi là siêu trăng; còn trăng tròn xảy ra ở viễn điểm xa nhất được gọi là vi trăng.[208] Siêu trăng sáng hơn 30% so với vi trăng, do có đường kính góc lớn hơn 14% và diện tích sáng gấp 1,142 ≈ 1,30.[208] Mắt người cảm nhận thay đổi độ sáng ít hơn so với mức thay đổi cường độ sáng thực tế, theo một số công thức liên hệ, như công thức logarit của định luật Weber–Fechner hoặc công thức của định luật lũy thừa Stevens.[209][210] Như vậy, Mặt trăng ở một pha tại cận điểm sẽ được cảm nhận sáng hơn so với Mặt trăng ở cùng pha đó tại viễn điểm, nhưng độ sáng hơn cảm nhận được không nhiều đến mức 30%.[210]

Đã có các báo cáo về sự thay đổi qua thời gian của một số đặc điểm trên bề mặt Mặt trăng.[211] Nhiều khẳng định như vậy bị cho là hão huyền và là kết quả từ việc quan sát dưới những điều kiện ánh sáng khác nhau, ảnh hưởng của khí quyển, hay những bản vẽ không phù hợp.[211][139] Tuy nhiên, sự thoát khí thi thoảng diễn ra và có thể là nguyên nhân của một tỉ lệ nhỏ hiện tượng thoáng qua được báo cáo.[211][139] Một ví dụ được chỉ ra vào năm 2006 rằng một vùng đường kính khoảng 3 km ở cấu trúc Ina bị điều chỉnh bởi các sự kiện giải phóng khí cách đây không quá 10 triệu năm và có thể vẫn đang tiếp diễn.[89]

Cũng như Mặt trời, hình dạng Mặt trăng có thể bị ảnh hưởng bởi khí quyển Trái đất.[212][213] Hiệu ứng quang học phổ biến là hào quang 22° hình thành khi ánh sáng Mặt trăng khúc xạ qua những tinh thể băng trong những đám mây ti tầng cao và quầng sáng nhỏ hơn khi Mặt trăng được quan sát qua mây mỏng.[213][212]


Thiên thực

Thiên thực xảy ra khi ít nhất một phần của Trái đất hoặc Mặt trăng đi vào bóng râm của thiên thể còn lại - lúc đó Mặt trời, Trái đất, Mặt trăng đều nằm trên một đường thẳng, gọi là sóc vọng.[214][215][15] Nhật thực là lúc Mặt trăng chắn ánh sáng Mặt trời đến một phần Trái đất, diễn ra vào một số kỳ trăng non khi Mặt trăng nằm giữa Mặt trời và Trái đất.[214] Ngược lại, nguyệt thực là lúc Trái đất chắn ánh sáng Mặt trời đến Mặt trăng, diễn ra vào một số kỳ trăng tròn khi Trái đất nằm giữa Mặt trời và Mặt trăng.[214] Quỹ đạo Mặt trăng quanh Trái đất (bạch đạo) nghiêng khoảng 5°9' so với quỹ đạo của Trái đất quanh Mặt trời (hoàng đạo), do đó thiên thực không xảy ra tại mọi dịp trăng non và trăng tròn.[15][162] Để thiên thực diễn ra thì Mặt trăng phải ở gần giao cắt của hai mặt phẳng quỹ đạo.[15] Sự tái lặp của nhật thực và nguyệt thực được mô tả bằng saros, với chu kỳ xấp xỉ 18 năm một lần.[15]

Kích cỡ biểu kiến của Mặt trăng gần bằng Mặt trời và đều vào cỡ hơn nửa độ.[195] Mặt trời lớn hơn Mặt trăng nhiều nhưng do ở cách xa Trái đất hơn hẳn nên nó có kích cỡ biểu kiến tương đồng.[15] Sự thay đổi trong kích cỡ biểu kiến của Mặt trăng do quỹ đạo không tròn, xảy ra trong những chu kỳ khác nhau, dẫn đến hai dạng nhật thực là toàn phần (Mặt trăng trông to hơn Mặt trời) và vành khuyên (Mặt trăng trông nhỏ hơn Mặt trời).[15][214]

Trong nhật thực toàn phần, chóp bóng tối nhất đằng sau Mặt trăng in lên một vùng nhỏ ở bề mặt Trái đất.[214][216] Những người ở trong vùng bóng tối này sẽ thấy đĩa Mặt trời bị che phủ hoàn toàn và quầng mặt trời trở nên có thể quan sát bằng mắt thường.[214] Một số hành tinh và những ngôi sao sáng nhất cũng có thể xuất hiện trên bầu trời trong nhật thực toàn phần.[214] Khoảng 3000 km xung quanh vùng bóng tối là vùng bán dạ; những người ở vùng bán dạ thấy Mặt trời bị che khuất một phần bởi Mặt trăng.[214][216] Do chuyển động của Trái đất và Mặt trăng trên quỹ đạo mà vết của chóp bóng tối, và cả vùng bán dạ, sẽ di chuyển về phía đông với tốc độ khoảng 1500 km/h.[214][216] Do vậy, hiện tượng nhật thực toàn phần, đối với một người quan sát đứng yên trên mặt đất, chỉ kéo dài không quá 7 phút.[214] Trong quãng thời gian kéo dài khoảng một giờ đồng hồ trước và sau khi diễn ra nhật thực toàn phần, người quan sát có thể chứng kiến nhật thực một phần.[214]

Khoảng cách giữa Mặt trăng và Trái đất gia tăng rất chậm qua thời gian, nên đường kính góc của Mặt trăng đang giảm chậm.[17] Thêm nữa, do đang trong quá trình tiến hóa thành sao khổng lồ đỏ, kích cỡ và đường kính biểu kiến của Mặt trời trên bầu trời đang tăng chậm.[189] Sự kết hợp của hai thay đổi này đồng nghĩa rằng hàng tỷ năm trước, Mặt trăng luôn luôn che phủ hoàn toàn Mặt trời trong nhật thực và không có nhật thực hình khuyên.[119][196][189] Tương tự như thế, hàng tỷ năm sau, Mặt trăng sẽ không còn có thể che phủ hoàn toàn Mặt trời được nữa và nhật thực toàn phần cũng không còn.[119][196][189]

Khác với nhật thực, trong nguyệt thực, chóp bóng tối đằng sau Trái đất có thể bao phủ tới 4 lần Mặt trăng.[214] Khi Mặt trăng không nằm hoàn toàn trong bóng tối của Trái đất, nguyệt thực một phần có thể được quan sát.[214] Vì bóng tối của Trái đất là lớn so với Mặt trăng, nên nguyệt thực toàn phần kéo dài lâu hơn so với nhật thực toàn phần.[214] Khoảng 20 phút trước khi Mặt trăng đi vào bóng tối Trái đất, Mặt trăng tròn đầy bị mờ dần đi, do Trái đất che bớt ánh sáng rọi đến nó.[214] Khi Mặt trăng di chuyển trên quỹ đạo bắt đầu vào bóng tối Trái đất, hình dạng tròn của bóng tối Trái đất bắt đầu in lên bề mặt của Mặt trăng.[214] Khi đã nằm hoàn toàn trong bóng tối của Trái đất, Mặt trăng vẫn có thể được nhìn thấy khá tối với màu hơi đỏ, được rọi sáng bởi ánh sáng Mặt trời đi cong qua khí quyển Trái đất.[214] Nguyệt thực toàn phần có thể kéo dài đến một tiếng 40 phút, còn khoảng thời gian nguyệt thực một phần, trước và sau nguyệt thực toàn phần, có thể kéo dài khoảng 1 tiếng đồng hồ.[214] Nguyệt thực toàn phần có thể được quan sát bởi tất cả mọi người ở nửa Trái đất quay về phía Mặt trăng, trái ngược với nhật thực toàn phần chỉ dành số ít nằm trong vệt đi qua của chóp bóng tối Mặt trăng.[214]

Do Mặt trăng liên tục chắn khung cảnh bầu trời một diện tích tròn rộng nửa độ,[195] hiện tượng che khuất xảy ra khi một hành tinh hay ngôi sao sáng đi qua phía sau Mặt trăng và bị che mất.[217] Chiếu theo khái niệm này thì nhật thực là sự che khuất Mặt trời,[217] mặc dù có định nghĩa rằng che khuất là một trường hợp của thiên thực trong đó thiên thể bị che có kích thước biểu kiến nhỏ hơn nhiều.[218] Mỗi vùng trên Trái đất có thể quan sát sự che khuất của các sao ở các thời điểm khác nhau và theo cách khác nhau, tương tự như với nhật thực, và hiện tượng che khuất từng được sử dụng để xác định vị trí của Mặt trăng và tọa độ địa lý của người quan sát.[217] Sự che khuất bởi Mặt trăng cũng được tận dụng để phát hiện các cặp sao đôi với khoảng cách biểu kiến từ 0,02 giây cung.[217] Đã có đề xuất sử dụng hiện tượng che khuất bởi Mặt trăng để dựng ảnh chụp tia gammatia X cứng của các nguồn thiên văn.[219]

Sơ đồ minh họa nhật thực toàn phần.[214]
Nhìn từ Trái đất, Mặt trăng và Mặt trời tỏ ra cùng kích cỡ trong nhật thực toàn phần.[214]


Bản vẽ Mặt trăng của Galileo Galilei trong cuốn sách Sidereus Nuncius (1610).[220]
Bản đồ Mặt trăng trong cuốn Selenographia, sive Lunae descriptio (1647), bởi Johannes Hevelius, một trong những bản đồ đầu tiên có thể hiện các vùng lộ ra bởi hiện tượng bình động.[221]

Khám phá

Trước thời kỳ du hành vũ trụ

Một trong các hình vẽ cổ của con người về Mặt trăng có thể là hình khắc trên đá vào 5000 năm trước mang tên Orthostat 47Knowth, Ireland.[2]

Tìm hiểu về các chu kỳ liên quan đến Mặt trăng là một phần của hoạt động thiên văn học thời kỳ đầu. Vào thế kỷ thứ 5 trước Công nguyên, các nhà thiên văn Babylon đã ghi chép chu kỳ saros khoảng 18 năm của nguyệt thực,[222]các nhà thiên văn Ấn Độ đã mô tả cự giác hàng tháng của Mặt trăng.[223] Nhà thiên văn học Trung Quốc Thạch Thân, vào thế kỷ thứ 4 trước Công nguyên, đã hướng dẫn cách tiên đoán nhật thực và nguyệt thực.[224](tr.411) Tiếp theo đó là việc hình thành các hiểu biết về hình dạng của Mặt trăng và cơ chế tạo nên ánh sáng Mặt trăng. Nhà triết học Hy Lạp cổ đại Anaxagoras (428 trước CN) cho rằng cả Mặt trời và Mặt trăng đều là những tảng đá hình cầu lớn, và Mặt trăng phản chiếu lại ánh sáng từ Mặt trời.[225][224](tr.227) Người Trung Quốc vào thời nhà Hán đã tin rằng Mặt trăng có nguồn năng lượng gọi là khí, nhưng họ cũng có lý thuyết cho rằng ánh sáng của Mặt trăng chỉ là phản xạ từ Mặt trời, và Kinh Phong (78–37 TCN) đã ghi nhận hình dạng cầu của Mặt trăng.[224](tr.413–414) Năm 499, nhà thiên văn Ấn Độ Aryabhata ghi chép trong cuốn sách Aryabhatiya của ông rằng nguồn gốc tạo nên ánh trăng là sự phản chiếu ánh sáng Mặt trời.[226] Nhà thiên văn học và vật lý học Alhazen (965–1039) phát hiện ra rằng Mặt trăng không phản xạ giống như một cái gương, mà phản xạ khuếch tán về mọi hướng.[227] Trầm Quát (1031–1095) vào đời nhà Tống đã ẩn dụ về các pha trăng rằm và trăng non, so sánh chúng với hình tượng quả cầu bạc có một nửa sơn bột trắng, sẽ có hình lưỡi liềm nếu nhìn từ bên cạnh.[224](tr.415–416)

Trong tác phẩm Về Vũ trụ của Aristoteles (384–322 TCN), Mặt trăng đánh dấu biên giới giữa các quả cầu của các nguyên tố biến đổi (đất, nước, khí và lửa), và các sao bất tử của ê te, theo lý thuyết vật lý Aristoteles.[228] Tuy nhiên, trong thế kỷ thứ 2 trước Công nguyên, Sélefkos Seleukos đã nhận định thủy triều gây ra bởi sức hút của Mặt trăng, và độ cao của thủy triều phụ thuộc vào vị trí Mặt trăng so với Mặt trời.[229] Trong cùng thời gian này, Arístarkhos xứ Sámios đã tính ra kích thước Mặt trăng và khoảng cách từ Mặt trăng đến Trái đất vào cỡ 20 lần bán kính Trái đất. Các kết quả đo này đã được cải thiện độ chính xác lên nhiều bởi Claudius Ptolemaeus (90–168): khoảng cách đến Mặt trăng vào cỡ 59 lần bán kính Trái đất và đường kính Mặt trăng vào cỡ 0,292 đường kính Trái đất, rất sát với các con số đã biết hiện nay, là 60 và 0,273.[230] Arkhimídis (287–212 TCN) đã thiết kế một mô hình vũ trụ có thể tính toán chuyển động của Mặt trăng và các vật thể khác trong Hệ Mặt trời.[231]

Trong Thời kỳ Trung cổ, trước khi có kính viễn vọng, Mặt trăng ngày càng được chấp nhận là có hình dạng hình cầu, mặc dù nhiều người tin rằng hình cầu này "nhẵn hoàn hảo".[232]

Năm 1610, Galileo Galilei đã xuất bản những bức vẽ đầu tiên về hình ảnh Mặt trăng quan sát qua kính viễn vọng, trong quyển sách Sidereus Nuncius, và ghi chép rằng thiên thể này không nhẵn mà có các núi non và các hố.[221][220] Thomas Harriot cũng đã vẽ những bức vẽ tương tự sớm hơn vài tháng, nhưng không xuất bản các bức vẽ này. Việc vẽ bản đồ Mặt trăng được phát triển tiếp trong thế kỷ 17, dựa vào quan sát từ kính viễn vọng. Các nỗ lực của Giovanni Battista RiccioliFrancesco Maria Grimaldi đã tạo ra hệ thống đặt tên các đặc điểm Mặt trăng được sử dụng rộng rãi ngày nay, trong đó các biển mang các tên Latinh thể hiện các khái niệm trừu tượng và thời tiết, còn các hố va chạm được đặt tên theo các nhà khoa học lớn đã khuất.[233] Wilhelm BeerJohann Heinrich Mädler những năm 1834–36 đã xây dựng bản đồ Mappa Selenographica và xuất bản vào năm 1837 cuốn sách Der Mond. Các công trình này chứa những nghiên cứu lượng giác chính xác đầu tiên về các đặc điểm của Mặt trăng, bao gồm chiều cao của trên một nghìn ngọn núi, với độ chính xác gần tương đương với nghiên cứu địa lý trên Trái đất.[234] Các hố trên Mặt trăng, lần đầu được ghi chép bởi Galileo, đã từng được cho là các miệng núi lửa cho đến những năm 1870, khi Richard Proctor đề xuất rằng chúng được tạo ra bởi các vụ va chạm.[235] Quan điểm này được nhà địa chất thực nghiệm Grove Karl Gilbert đồng tình vào năm 1892, và tiếp tục được củng cố qua các nghiên cứu so sánh thực hiện từ các năm 1920 đến các năm 1940,[236] hình thành nên một nhánh nghiên cứu về địa tầng học Mặt trăng, một nhánh mới của địa chất thiên văn phát triển vào những năm 1950.[235]


1958-1970

Trong thời gian từ 1958, năm khởi động chương trình Luna của Liên Xô, đến những năm 1970, năm kết thúc của chương trình Apollo và cả chương trình Luna, cuộc Chạy đua Vũ trụ giữa Liên Xô và Mỹ đã làm tăng đáng kể mối quan tâm về khám phá Mặt trăng. Khi cuộc đua này kết thúc, cả Mỹ và Liên Xô đã nắm được các công nghệ tên lửa đẩy cần thiết, và các quốc gia này sau đó chỉ còn gửi các tàu thăm dò không người lái bay qua hoặc hạ cánh hay đâm xuống Mặt trăng.

Hoạt động của Liên Xô

Sau ba nhiệm vụ không tên thất bại năm 1958, tàu không gian từ chương trình Luna của Liên Xô đã lần đầu tiên hoàn thành những mục tiêu sau: vật thể nhân tạo đầu tiên thoát khỏi trọng lực Trái đất và đi qua gần Mặt trăng là Luna 1, vật thể nhân tạo đầu tiên va chạm bề mặt Mặt trăng là Luna 2, và những bức ảnh đầu tiên về mặt xa của Mặt trăng mà bình thường ẩn dạng được chụp bởi Luna 3, tất cả đều vào năm 1959.[237]

Tàu không gian đầu tiên đổ bộ nhẹ nhàng lên Mặt trăng thành công là Luna 9 và phương tiện không người lái đầu tiên đi vào quỹ đạo quanh Mặt trăng là Luna 10, cả hai vào năm 1966.[235] Các mẫu đất và đá được đem về Trái đất bởi ba nhiệm vụ trả về mẫu vật (Luna 16 năm 1970, Luna 20 năm 1972, và Luna 24 năm 1976) với tổng khối lượng 0,3 kg.[238] Hai cỗ máy thám trắc tiên phong trong chương trình Lunokhod của Liên Xô đã đặt chân lên Mặt trăng vào các năm 1970 và 1973.

Hoạt động của Hoa Kỳ

Năm 1961, Tổng thống Hoa Kỳ John F. Kennedy cam kết sẽ đưa con người lên Mặt trăng trước khi thập kỷ 1960 kết thúc. Cùng năm, NASA đã đưa một loạt tàu thăm dò không người lái lên Mặt trăng để tìm hiểu về bề mặt và chuẩn bị cho nhiệm vụ đưa người lên đây. Chương trình Ranger của Phòng thí nghiệm Sức đẩy Phản lực đã cho những ảnh chụp cận cảnh đầu tiên; chương trình Tàu quỹ đạo Mặt trăng đã vẽ bản đồ toàn bộ bề mặt; chương trình Surveyor đã đưa tàu đổ bộ Surveyor 1 lên Mặt trăng sau Luna 9 khoảng 4 tháng. Chương trình Apollo với các tàu có người lái được thực hiện song song. Sau một loạt thử nghiệm với các tàu Apollo không người lái và có người lái trên quỹ đạo quanh Trái đất, năm 1968 Apollo 8 đã lần đầu tiên đưa người bay trên quỹ đạo quanh Mặt trăng. Năm 1969 là thời kỳ đỉnh cao của Cuộc chạy đua Vũ trụ với việc lần đầu con người đặt chân lên Mặt trăng nhờ các tàu Apollo.[239]

Neil Armstrong, phi hành gia của Apollo 11, đã trở thành người đầu tiên bước chân trên Mặt trăng, vào hồi 02:56 UTC ngày 21 tháng 7 năm 1969.[240] Sự kiện này đã được truyền hình trực tiếp và ước chừng có khoảng 500 triệu người trên toàn cầu đã xem.[241][242] Các tàu Apollo đã mang về 380,05 kg đất đá Mặt trăng trong 2196 mẫu vật.[243]

Các tàu Apollo cũng đã lắp đặt nhiều thiết bị thí nghiệm trên Mặt trăng, gồm các đầu dò dòng nhiệt, địa chấn kế, từ kế, tại các vị trí đổ bộ của Apollo 12, 14, 15, 1617. Dữ liệu từ các thiết bị này được truyền trực tiếp về Trái đất, cho đến năm 1977, khi chi phí thực hiện bị cắt giảm.[244][245] Tuy nhiên thí nghiệm đo khoảng cách laser Mặt trăng chỉ dùng các thiết bị thụ động là các tấm gương hồi phản, nên vẫn được tiếp tục cho đến ngày nay. Việc đo khoảng cách vẫn thường xuyên được thực hiện bởi các tia laser phát ra từ các trạm ở Trái đất, với độ chính xác cỡ vài xentimét. Dữ liệu khoảng cách vẫn đang được dùng cho nhiều mục đích nghiên cứu, bao gồm việc xác định giới hạn kích thước lõi Mặt trăng.[246]

Apollo 17 năm 1972 là chuyến bay cuối cùng của chương trình Apollo, trong đó có sự tham gia lần đầu của một nhà khoa học địa chất, Jack Schmitt, trong số các phi hành gia.[25]

Hình ảnh đầu tiên trong lịch sử về mặt xa của Mặt trăng do Luna 3 chụp, 7 tháng 10 năm 1959
Buzz Aldrin đang rời khỏi Mô đun Mặt trăng Đại bàng trong chuyến đi Apollo 11 (1969) để trở thành người thứ hai đặt chân lên Mặt trăng


SMART-1 bay quay Mặt trăng theo quỹ đạo thấp dần với động cơ ion.
Ảnh chụp xe tự hành Ngọc Thố 2 từ tàu đổ bộ Thường Nga 4 tại mặt xa của Mặt trăng.

Thập kỷ 1970 đến nay

Từ thập niên 1970, mối quan tâm trong thám hiểm vũ trụ bắt đầu hướng về các khu vực khác trong Hệ Mặt trời. Trong nhiều năm, Mặt trăng không được chú ý, cho đến khi hoạt động vũ trụ dần được quốc tế hóa.

Từ những năm 1990, có thêm nhiều quốc gia tham gia khai phá trực tiếp Mặt trăng. Năm 1990, Nhật Bản là quốc gia thứ ba đưa tàu vũ trụ bay quanh Mặt trăng, tàu Hiten. Con tàu này thả ra một đầu dò quỹ đạo mang tên Hagoromo, nhưng bộ phận truyền tín hiệu của đầu dò bị hỏng và ngăn cản việc khai thác chuyến thám hiểm này cho mục đích khoa học.[247] Năm 1994, Hoa Kỳ đưa tàu Clementine vào quỹ đạo Mặt trăng. Tàu Clementine đã vẽ bản đồ địa hình gần như toàn cầu đầu tiên cho Mặt trăng và chụp ảnh đa phổ toàn cầu đầu tiên cho bề mặt Mặt trăng.[248] Tiếp đó, vào năm 1998, tàu Lunar Prospector của Hoa Kỳ đã phát hiện dư lượng hydro ở hai cực, có thể được sinh ra bởi nước đá ở các hố chìm trong bóng tối.[249]

Tàu SMART-1 của Liên minh Châu Âu, tàu vũ trụ thứ hai sử dụng sức đẩy ion, đã hoạt động trên quỹ đạo Mặt trăng từ ngày 15 tháng 11 năm 2004 cho đến khi được cho đâm xuống bề mặt vào ngày 3 tháng 9 năm 2006. Chuyến thám hiểm này đã cung cấp những kết quả chi tiết đầu tiên về các thành phần hóa học của bề mặt Mặt trăng.[250]

Chương trình Thám hiểm Mặt trăng của Trung Quốc bắt đầu với tàu Thường Nga 1. Thường Nga 1 đã bay quanh Mặt trăng từ ngày 5 tháng 11 năm 2007, thu thập bản đồ ảnh chụp toàn bộ Mặt trăng, và sau đó được điều khiển để đâm xuống thiên thể này ngày 1 tháng 3 năm 2009.[251] Thường Nga 2, được phóng vào tháng 10 năm 2010, đã đến Mặt trăng nhanh hơn, vẽ bản đồ Mặt trăng ở độ phân giải cao hơn trong vòng 8 tháng, sau đó đi đến điểm Lagrange L2 của hệ Trái đất-Mặt trời, rồi bay qua tiểu hành tinh 4179 Toutatis ngày 13 tháng 12 năm 2012, và cuối cùng là đi vào khoảng không vũ trụ. Ngày 14 tháng 12 năm 2013, Thường Nga 3 đã đưa một tàu đổ bộ lên bề mặt Mặt trăng. Tàu đổ bộ này sau đó thả ra một xe tự hành Mặt trăng có tên Ngọc Thố (玉兔). Thường Nga 4 cũng là một tàu mang theo xe tự hành đã được phóng vào năm 2019, trở thành tàu vũ trụ đầu tiên hạ cánh ở mặt xa của Mặt trăng. Thường Nga 5 đã đáp xuống Mặt Trăng vào ngày 1 tháng 12 năm 2020 theo giờ Việt Nam và sau đó, vào ngày 16 tháng 12 năm 2020, đã mang về Trái đất mẫu vật của Mặt trăng.[cần chú thích]

Từ ngày 4 tháng 10 năm 2007 đến ngày 10 tháng 6 năm 2009, tàu quỹ đạo Kaguya của Cơ quan Thám hiểm Hàng không Vũ trụ Nhật Bản cùng với 2 vệ tinh nhân tạo nhỏ đi kèm để trung chuyển tín hiệu, đã thu thập các dữ liệu địa vật lý và ghi lại video độ phân giải cao đầu tiên ở bên ngoài quỹ đạo Trái đất.[252][253]

Nhiệm vụ khám phá Mặt trăng đầu tiên của Ấn Độ đã được thực hiện bởi tàu Chandrayaan-1, bay quanh thiên thể này từ ngày 8 tháng 11 năm 2008 cho đến khi bị mất tín hiệu ngày 27 tháng 8 năm 2009. Chandrayaan-1 đã cung cấp các bản đồ có độ phân giải cao về hóa học, khoáng vật học và quang-địa chất của bề mặt Mặt trăng, và đã xác nhận sự tồn tại của nước trên Mặt trăng.[254] Tổ chức Nghiên cứu Không gian Ấn Độ đã lên kế hoạch cho tàu Chandrayaan-2 vào năm 2013, dự định mang theo các xe tự hành của Nga.[255][256] Tuy nhiên thất bại của dự án Fobos-Grunt của Nga đã làm ngày phóng lùi đến 22 tháng 7 năm 2019. Tàu đổ bộ Vikram của Chandrayaan-2 đã cố gắng hạ cánh đến khu vực gần nam cực của Mặt trăng vào ngày 6 tháng 9 năm 2019, nhưng bị mất tín hiệu sau khi di chuyển được 2,1 km.

Ngày 18 tháng 6 năm 2009, Hoa Kỳ phóng cùng lúc Tàu quỹ đạo Trinh sát Mặt trăng và thiết bị va chạm LCROSS. LCROSS đã tạo ra một va chạm ở hố Cabeus ngày 9 tháng 10 năm 2009,[257] còn Tàu quỹ đạo Trinh sát Mặt trăng hiện nay vẫn đang hoạt động, đo cao độ chính xác và chụp ảnh độ phân giải cao. Cặp tàu GRAIL của NASA đã bắt đầu bay quanh Mặt trăng từ ngày 1 tháng 1 năm 2012,[258] để nghiên cứu cấu trúc bên trong của Mặt trăng. Ngày 6 tháng 10 năm 2013, tàu thăm dò LADEE của NASA đã đi vào quỹ đạo Mặt trăng, nghiên cứu tầng ngoài khí quyển Mặt trăng.

Nga đã lên kế hoạch cho các dự án Luna trong tương lai, từ Luna 25 đến Luna 31. Luna 25, còn gọi là Luna-Glob, dự kiến sẽ có một tàu đổ bộ không người lái mang theo một bộ địa chấn kế và một tàu quỹ đạo được thiết kế dựa trên tàu Fobos-Grunt đến Sao Hỏa đã từng thất bại.[259] Hoa Kỳ cũng đã công bố chương trình Artemis, với mục tiêu "đưa người phụ nữ đầu tiên và người đàn ông tiếp theo" lên Mặt trăng, đặc biệt là vùng cực nam, vào năm 2024.


Hoạt động tư nhân

Ngoài các dự án của các quốc gia, cũng có các kế hoạch tư nhân để thám hiểm và khai thác Mặt trăng.

Giải thưởng Mặt trăng X của Google, công bố ngày 13 tháng 9 năm 2007, trao thưởng 20 triệu đô la Mỹ cho bất cứ tư nhân nào đưa được xe tự hành lên thiên thể này theo một số tiêu chí trước tháng 3 năm 2018.[260]Tuy nhiên, vào tháng 1 năm 2018, giải thưởng đã được tuyên bố là không có ai đạt được do không có đội dự thi nào kịp hoàn thành nhiệm vụ đúng hạn.[261]

Công ty Năng lượng Shackleton đã công bố một chương trình hoạt động tại cực nam của Mặt trăng để thu hoạch nước và cung cấp cho các Kho chứa Thuốc phóng của họ.[262] Tuy nhiên công ty đã không huy động được đủ vốn để hoạt động.

Tháng 8 năm 2016, công ty khởi nghiệp Moon Express đã được chính phủ Hoa Kỳ cấp phép thực hiện chương trình đổ bộ lên Mặt trăng.[263] Ngày 28 tháng 2 năm 2018, SpaceX, Vodafone, NokiaAudi công bố hợp tác trong việc xây dựng mạng 4G trên Mặt trăng để truyền hình trực tiếp về Trái đất.[264] Ngày 29 tháng 11 năm 2018 NASA mở thầu cho các công ty tư nhân thực hiện việc đưa các gói thiết bị nhỏ lên Mặt trăng, trong chương trình Dịch vụ Vận tải Mặt trăng Thương mại mà nay là một phần của chương trình Artemis.[265]

Mô hình của ba tàu đổ bộ của các nhà thầu tư nhân được chọn cho chương trình Artemis. Từ trái qua phải: Peregrine của Astrobotic Technology, Nova-C của Intuitive MachinesZ-01 của OrbitBeyond.


Các vật dụng bị để lại trên Mặt trăng, sau hoạt động của Gói Thí nghiệm Bề mặt Mặt trăng của Apollo

Sự hiện diện của con người

Hoạt động của con người trên Mặt trăng đã để lại các vật dụng tại đây. Trong số đó, có một số được lắp đặt có chủ đích, như các tác phẩm nghệ thuật Bảo tàng Mặt trăng, các thông điệp thiện chí Apollo 11, các tấm thẻ Mặt trăng, bảng tưởng niệm Nhà du hành đã Ngã xuống.

Một số thiết bị vẫn còn đang trong quá trình sử dụng. Một số tàu quỹ đạo vẫn đang hoạt động trên quỹ đạo Mặt trăng, như Tàu quỹ đạo Trinh sát Mặt trăng. Một số tàu đổ bộ và xe tự hành vẫn đang được vận hành như các thiết bị của Thường Nga 3, với Kính viễn vọng Cực tím Mặt trăng,[266] của Thường Nga 4Thường Nga 5.

Mặt trăng được coi là một địa điểm lý tưởng để lắp đặt nhiều loại kính viễn vọng.[267] Nó không quá xa Trái đất, nên không đòi hỏi chi phí quá lớn trong vận chuyển, lắp đặt và liên lạc. Các ảnh chụp quang học sẽ không bị gây nhiễu do rối loạn trong khí quyển, vì Mặt trăng hầu như không có khí quyển. Một số hố ở gần các cực nằm trong bóng tối vĩnh cửu và rất lạnh nên phù hợp cho kính viễn vọng hồng ngoại vốn nhạy cảm với nhiễu hồng ngoại từ vật thể nhiệt độ thường. Kính viễn vọng vô tuyến ở mặt xa của Mặt trăng cũng được che chắn khỏi nhiễu sóng vô tuyến từ nhiều nguồn phát ra ở Trái đất.[268] Đất Mặt trăng, tuy có thể gây ra vấn đề cho các bộ phận chuyển động của các kính viễn vọng, có thể được trộn với các ống nano carbonepoxy để tạo thành vật liệu xây dựng cho các công trình kính viễn vọng đạt đường kính tới 50 mét.[269] Kính viễn vọng thiên đỉnh trên Mặt trăng có thể được tạo ra dễ dàng với muối lỏng.[270] Lớp đất mặt mịn chứa nhiều silica có thể được dùng để chế tạo gương và các dụng cụ thủy tinh.[103]

Đã có những kế hoạch để tiến đến cho phép con người định cư trên Mặt trăng. Dự án Cổng Mặt trăng thuộc chương trình Artemis là một trong các nỗ lực đang được triển khai cho mục đích này. Tuy con người đã từng có mặt được vài ngày trên Mặt trăng, có các thử thách cho cuộc sống lâu dài tại đây. Bụi Mặt trăng có thể dính vào quần áo và bị mang theo vào khu vực sinh hoạt. Bụi này đã từng được nếm và ngửi bởi một số nhà du hành vũ trụ ở chương trình Apollo, với tên gọi "hương vị Apollo", được cảm nhận giống thuốc súng.[271][272] Bụi mịn có thể gây ra các vấn đề về sức khỏe.[272]

Năm 2019, ít nhất một hạt giống đã nảy mầm trong một thí nghiệm mang theo sự sống từ Trái đất của tàu đổ bộ Thường Nga 4 có tên gọi Hệ Vi Sinh thái Mặt trăng.[273]

Mặc dù chương trình Luna đã cắm các cờ của Liên Xô trên Mặt trăng, và các nhà du hành vũ trụ Apollo cũng đã cắm những lá cờ Hoa Kỳ, chưa có quốc gia nào tuyên bố sở hữu lãnh thổ trên Mặt trăng.[274] Nga, Trung Quốc, Ấn Độ và Hoa Kỳ đã ký Hiệp ước Ngoại Không gian năm 1967,[275] định nghĩa Mặt trăng và toàn bộ không gian ngoài Trái đất là "di sản chung của nhân loại".[274] Hiệp ước này giới hạn việc khai thác Mặt trăng vào mục đích hòa bình, nghiêm cấm hoạt động quân sự và vũ khí hủy diệt hàng loạt.[276] Hiệp ước Mặt trăng năm 1979 ngăn cản các quốc gia đơn phương khai thác tài nguyên Mặt trăng. Tuy nhiên đến tháng 11 năm 2016, mới chỉ có 18 quốc gia đã phê chuẩn hiệp ước này,[277] trong đó không có quốc gia nào có năng lực tự đưa người lên không gian. Một số cá nhân đã tuyên bố sở hữu bất động sản trên Mặt trăng nhưng không có tuyên bố nào đã được công nhận rộng rãi.[278][279][280]


Văn hóa

Thần thoại

Các vùng có mầu sáng và màu sẫm trên Mặt trăng đã được con người tưởng tượng thành những hình ảnh khác nhau trong các nền văn hóa khác nhau, như chú Cuội và cây đa trên cung trăng, trong văn hóa dân gian Việt Nam, hay thỏ Mặt trăng, trong văn hóa Trung Hoa và các vùng viễn đông (Hàn Quốc, Nhật Bản), hoặc hình mặt người, hình con trâu. Trong nhiều nền văn hóa cổ và tiền sử, Mặt trăng được nhân cách hóa thành nam thần hoặc nữ thần, hoặc được coi như hiện tượng siêu nhiên và thuật chiêm tinh liên quan đến Mặt trăng vẫn còn được lan truyền đến ngày nay.

Thần thoại Trung Hoa kể về sự tích Hằng Nga bay lên Mặt trăng và trường sinh cùng thỏ ngọc tại đây, một trong các sự tích lý giải cho phong tục tết Trung Thu. Thần thoại Ấn Độ coi Chandra là nam thần Mặt trăng. Tôn giáo Lưỡng Hà của người Sumer cổ (4500–1900 TCN) tin Mặt trăng là nam thần Nanna,[281][282] cha của Inanna, nữ thần Sao kim,[281][282]Utu, thần Mặt trời.[281][282] Trong tín ngưỡng Tiền Ấn Âu, Mặt trăng được nhân cách hóa thành nam thần *Meh1not.[283] Theo thần thoại Hy Lạp La Mã cổ đại, Mặt trời là nam và Mặt trăng là nữ, ứng với Helios/SolSelene/Luna;[283] một đặc trưng văn hóa của vùng phía đông Địa Trung Hải[283] và dấu vết về nam thần Mặt trăng trong văn hóa Hy Lạp cổ được để lại trong hình tượng Menelaus.[283]

Biểu tượng sao và lưỡi liềm đã xuất hiện trong văn hóa loài người từ thời kỳ đồ đồng, đại diện cho Mặt trời hoặc Mặt trăng, hoặc Mặt trăng và Sao kim. Biểu tượng này được người Hy Lạp cổ đại dùng cho Artemis hoặc Hekate,[284] và sau này đại diện cho Byzantium.[285] Biểu tượng lưỡi liềm đã được dùng trong văn hóa Lưỡng Hà để đại diện thần Nanna.[282] Trong nghệ thuật Hy Lạp cổ đại, nữ thần Selene đội trên đầu hình lưỡi liềm xoay ngang giống hai sừng.[286][287] Các biểu tượng Mặt trời và Mặt trăng có mặt người được phát triển sau này vào thời trung cổ.

Lịch

Chu kỳ lặp lại của pha Mặt trăng được sử dụng như một công cụ đo thời gian tiện lợi, tạo thành cơ sở cho nhiều hệ thống lịch cổ. Một số thanh đếm cổ, được làm từ xương vào khoảng 20–30 nghìn năm trước, đã được một số nhà nghiên cứu cho là đánh dấu các pha của Mặt trăng.[288][289][290] Ngày nay, chu kỳ lặp lại của tháng, khoảng 30 ngày, gần tương ứng với chu kỳ giao hội của Mặt trăng. Trong tiếng Hán và các ngôn ngữ Châu Âu, từ biểu thị khái niệm "tháng" có nguồn gốc từ Mặt trăng.[291][292][293][294]

Hầu hết các lịch đã xuất hiện trong lịch sử loài người đều là âm dương lịch, dựa trên các chu kỳ chuyển động của cả Mặt trăng và Mặt trời. Lịch Hồi giáo xuất hiện vào thế kỷ thứ 7 là một ngoại lệ, dựa hoàn toàn vào lịch Mặt trăng. Theo lịch này, các tháng được xác định bằng việc quan sát hilal, trăng non sớm nhất, ở đường chân trời.[295]

Ảnh hưởng tâm sinh lý

Có những ghi chép chưa được xác nhận bằng lý thuyết khoa học về chu kỳ khoảng 29,5 ngày của Mặt trăng lên hành vi và trạng thái tâm sinh lý của sinh vật trên Trái đất, bao gồm con người.

Trong một số nền văn hóa, Mặt trăng có liên hệ với tính cách điên rồ hoặc phi lý. Nhà triết học AristotelesPliny cha đã cho rằng mặt trăng tròn gây ra sự điên cuồng trong những người nhạy cảm. Họ giải thích là não bộ chứa nhiều nước và bị ảnh hưởng bởi lực thủy triều của Mặt trăng; tuy nhiên theo tính toán hiện đại, lực thủy triều Mặt trăng có tác động vô cùng bé tới con người.[296] Có một số người ngày nay vẫn tin là Mặt trăng tròn làm tăng số ca nhập viện vì tâm thần, số ca giết người hoặc tự tử, hay số vụ tai nạn giao thông; tuy nhiên đã có hàng chục nghiên cứu phủ nhận mối liên hệ này.[296][297][298][299][300]

Một chiếc gương đồng thời nhà Đường ở Trung Quốc (618-906) có họa tiết Hằng Ngathỏ ngọc trên cung trăng.
Các pha Mặt trăng trong một tờ lịch ở cuốn Địa chí Catalunya (1375) của Abraham và Jehuda Cresques.


Mặt trăng hiện lên nổi bật trong bức họa Đêm đầy sao của Vincent van Gogh

Trăng vào cửa sổ đòi thơ,
Việc quân đang bận, xin chờ hôm sau,
Chuông lầu chợt tỉnh giấc thu,
Ấy tin thắng trận Liên khu báo về.

Bản dịch bởi Huy Cận cho bài Báo Tiệp (報捷) của Hồ Chí Minh

Nguồn cảm hứng

Mặt trăng là nguồn cảm hứng cho nhiều nhà thơ, nhà văn nổi tiếng ở nhiều thời đại, nhiều nền văn hóa. Các nhà thơ Trung Quốc như Lý Bạch, Trương Cửu Linh, Đỗ Phủ, Tô Thức đều có tác phẩm vịnh nguyệt. Những tác giả Nhật Bản, như Myoe (1173-1232), Dogen (1200-1253), cũng có những áng thơ về trăng. Các tác giả Pháp như Paul Verlaine hay Guy de Maupassant cũng có thơ và tiểu thuyết về ánh trăng,[301] trong đó có tác phẩm tiếp tục gây cảm hứng cho âm nhạc của Claude Debussy.[302] Nhiều tác giả Việt Nam qua nhiều thời đại cũng viết về trăng.

Mặt trăng cũng là chủ đề của các tiểu thuyết văn học viễn tưởng. Vào thế kỷ thứ 2, Lukianos xứ Samosata viết tiểu thuyết Truyện Thật (Ἀληθῆ διηγήματα), kể chuyện những người anh hùng du hành đến Mặt trăng và gặp các cư dân tại đó.[27] Từ thời Phục Hưng đến nay, có một số tác phẩm tiêu biểu như Tiếu sử về Đế chế Mặt trăng của Cyrano de Bergerac, Từ Trái đất lên Mặt trăng (1865) và Bay quanh Mặt trăng (1869) của Jules Verne, Tiên phong lên Mặt Trăng (1901) của H. G. Wells.[27]

Sự thể hiện Mặt trăng trên bầu trời xuất hiện phổ biến trong hội họa. Tại Châu Âu, trăng có vai trò đặc biệt là trong chủ nghĩa lãng mạn vì sự biến mất của trăng có thể được liên tưởng đến số phận bất hạnh hoặc hành trình từ sự sống đến cái chết.[284] [303] [304]

Trong âm nhạc, Mặt trăng là nguồn cảm hứng cho nhiều sáng tạo. Các ví dụ trong âm nhạc cổ điển Châu Âu là Sonata ánh trăng (1802) của Ludwig van Beethoven (mặc dù tên này được đặt khi nhà soạn nhạc đã mất) hoặc phần Clair de lune (1905) trong giao hưởng của Claude Debussy.[305] Các sự kiện khám phá Mặt trăng nổi tiếng cũng đi vào ca nhạc, như Walking on the Moon (1979) của The Police, Man on the Moon (1992) của R.E.M. hoặc album The Dark Side of the Moon (1973) của Pink Floyd.[305]

Trong điện ảnh, có các phim viễn tưởng, tài liệu, tiểu sử chính kịch về chủ đề Mặt trăng. Một số ví dụ là Đích đến Mặt trăng (1950) của Irving Pichel, Người đầu tiên trên Mặt trăng (1964) của Nathan Juran[306], Apollo 13 (1995) của Ron Howard, Mặt trăng (2009) của Duncan Jones, Bước chân đầu tiên (2018) của Damien Chazelle.[307][308]

Trong kỳ học, trăng tròn xuất hiện trên huy hiệucờ Lào, Mông CổPalau.[309] Ngoài ra, lưỡi liềmngôi sao và lưỡi liềm đã trở thành biểu tượng của Đế chế Ottoman, kế thừa Byzantium, và cờ của nhiều quốc gia Hồi giáo, như Thổ Nhĩ Kỳ, Tunisia, AlgeriaPakistan.[285] [310][311] Hình lưỡi liềm cũng được sử dụng độc lập với Hồi giáo, như ở cờ Singapore. [311]


Thông tin tham khảo

Mặt trăng Biểu tượng Mặt trăng
Mặt trăng nhìn từ Trái đất, theo chu kỳ quay quanh Trái đất, thể hiện các pha và hiện tượng bình động.
Danh pháp
Danh pháp
Trái đất I
Tên khác
  • Hằng Nga
  • Chị Hằng (văn thơ)
  • Nguyệt (Hán Việt)
Đặc trưng quỹ đạo
Kỷ nguyên J2000
Cận điểm quỹ đạo362600 km
(356400370400 km)
Viễn điểm quỹ đạo405400 km
(404000406700 km)
384 399 km  (0,00257AU)[57]
Độ lệch tâm quỹ đạo0,0549[57]
27,321661 ngày
(27 ngày 7 giờ 43 phút 11,5 s[57])
29,530589 ngày
(29 ngày 12 giờ 44 phút 2,9 s)
1,022 km/s
Độ nghiêng quỹ đạo5,145° so với hoàng đạo[312][↓ 10]
Lùi lại một vòng trong 18,61 năm
Dịch lên một vòng trong 8,85 năm
Vệ tinh tự nhiênTrái đất[↓ 1][313]
Tính chất vật lý
Bán kính trung bình
1737,4 km  
(0,2727 giá trị Trái đất)
[57][314][315]
Bán kính xích đạo
1738,1 km  
(0,2725 giá trị Trái đất)
[314]
Bán kính cực
1736,0 km  
(0,2731 giá trị Trái đất)
[314]
Độ dẹt0,0012[314]
Chu vi10921 km  (xích đạo)
3,793×107 km²  
(0,074 giá trị Trái đất)
Thể tích2,1958×1010 km³  
(0,020 giá trị Trái đất)[314]
Khối lượng7,342×1022 kg  
(0,012300 giá trị Trái đất)[57][314]
[316]
Mật độ trung bình
3,344 g/cm3[57][314]
0,606 giá trị Trái Đất
1,62 m/s2  (0,1654 g)[314]
0,3929 ±0,0009[317]
2,38 km/s
Chu kỳ quay thiên văn
27,321661 ngày  (đồng bộ)
Tốc độ quay xích đạo
4,627 m/s
Xích kinh cực bắc
  •  17giờ 47phút 26giây
  • 266,86°[319]
Xích vĩ cực bắc
65,64°[319]
Suất phản chiếu0,136 [320]
Nhiệt độ mặt tối thiểu trung bình tối đa
Xích đạo 100 K 220 K 390 K
85°B  150 K 230 K[321]
29,4-29,9 đến 33,5-34,1 phút cung[↓ 7]
Khí quyển[61]
Áp suất bề mặt
Thành phần theo thể tích

Chú thích

  1. a b Có một số tiểu hành tinh gần Trái đất, bao gồm 3753 Cruithne, cùng quỹ đạo với Trái đất: quỹ đạo của chúng khiến chúng có những thời gian di chuyển vào gần Trái Đất rồi sau đó lại rời xa (Morais và Morbidelli, 2002). Chúng là các giả vệ tinh – chúng không phải vệ tinh tự nhiên của Trái đất do không quay quanh Trái đất. Xem thêm các vệ tinh tự nhiên của Trái đất.
  2. Cấp sao biểu kiến trung bình của trăng tròn là khoảng −12,7, so với -26,8 của Mặt trời (Fraknoi, Morrison và Wolff, 2016, tr.597-598). Trong lịch sử có những sao chổi đã được quan sát với độ sáng cao, ví dụ sao chổi 1882b đã được quan sát bằng mắt thường vào ban ngày ở cạnh Mặt trời (John Tebbutt, 1904, tr.133-134), tuy nhiên các hiện tượng này chỉ kéo dài vài giờ đến vài ngày. Trong tương lai, sao đỏ khổng lồ Betelgeuse sẽ bùng nổ thành siêu tân tinh với cấp sao biểu kiến gần bằng Mặt trăng, tối đa khoảng -12,4 trong vài tháng (Dolan và các tác giả khác, 2017, tr.7).
  3. Các thiên thể có khối lượng cỡ hành tinh là những thiên thể đủ lớn để trọng lực chiến thắng cường độ chịu nén của vật liệu cấu tạo nên thiên thể, khiến cho thiên thể ở trạng thái cân bằng thủy tĩnh và có hình dạng gần với hình cầu (Basri và Brown, 2006, tr.196), nhưng cũng không quá lớn để nén vật chất tại tâm đến trạng thái gây ra phản ứng nhiệt hạch (Basri và Brown, 2006, tr.199), hình thành nên ngôi sao. Dải khối lượng của hành tinh, do đó, vào cỡ từ mười phần nghìn khối lượng Trái đất (Basri và Brown, 2006, tr.199) đến dưới khối lượng sao lùn nâu khoảng vài chục khối lượng Sao mộc (Basri và Brown, 2006, tr.199).
  4. Đặt tên theo nữ thần Theia, trong thần thoại Hy Lạp, là mẹ của nữ thần Mặt trăng Selene.
  5. Charon có tỷ lệ kích thước so với Pluto lớn hơn, nhưng Pluto hiện nay không được xếp là hành tinh, mà được xếp loại là hành tinh lùn (Fraknoi, Morrison và Wolff, 2016, tr.427).
  6. Thang thời gian 81 nghìn năm là khoảng thời gian đủ để 99% bề mặt Mặt trăng bị các vụ va chạm mới (chưa từng xuất hiện trước đó 81 nghìn năm) làm xới trộn ít nhất 2 xăngtimét lớp đất mặt trên cùng, bởi chính vật thể va chạm vào và bởi vật liệu văng ra từ vụ va chạm sau đó rơi xuống. (Speyerer và các tác giả khác, 2016, phần 'Modelling splotch accumulation' ở mục 'Method')
  7. a b Các giá trị đường kính góc 29,4 phút cung, khi Mặt trăng ở xa nhất, và 33,5 phút cung, khi Mặt trăng ở gần nhất, là các giá trị quan sát giả định từ tâm Trái Đất (hoặc từ điểm quan sát được Mặt trăng mà nằm xa Mặt trăng nhất trên bề mặt Trái đất), tính xấp xỉ theo radian bằng đường kính Mặt trăng (2 lần 1738,2 km theo Cox, 2000, tr.309) chia cho khoảng cách nối tâm Trái đất và tâm Mặt trăng. Các giá trị đường kính góc 29,9 phút cung, khi Mặt trăng ở xa nhất, và 34,1 phút cung, khi Mặt trăng ở gần nhất, là các giá trị quan sát giả định từ điểm sát Mặt trăng nhất trên bề mặt Trái đất (tại xích đạo, Mặt trăng ở thiên đỉnh), tính xấp xỉ theo radian bằng đường kính Mặt trăng chia cho khoảng cách nối tâm Trái đất và tâm Mặt trăng trừ đi bán kính Trái đất (6376,1 km theo Cox, 2000, tr.240). Các giá trị này đạt nhỏ nhất (29,4 và 29,9 phút cung) khi khoảng cách nối tâm Trái Đất Mặt Trăng lớn nhất là 406700 km (Cox, 2000, tr.308), và đạt lớn nhất (33,5 và 34,1 phút cung) khi khoảng cách trên nhỏ nhất là 356400 km (Cox, 2000, tr.308).
  8. Chính xác hơn, chu kỳ quỹ đạo trung bình, so với nền sao xa, là 27,321661 ngày, và chu kỳ quỹ đạo nhiệt đới trung bình là 27,321582 ngày (Cox, 2000, tr.308-309).
  9. Chính xác hơn, chu kỳ giao hội trung bình của Mặt trăng là 29,530588 ngày (Cox, 2000, tr.308).
  10. Khoảng từ 18,29° đến 28,58° so với xích đạo Trái đất.[57]
  11. Giá trị lớn nhất được tính cho khoảng cách gần nhất từ Trái đất đến Mặt trăng, 350 600 km, dựa trên số liệu gốc là −12.74 ứng với khoảng cách từ xích đạo đến tâm Mặt trăng là 378 000 km theo tài liệu tra cứu của NASA. Giá trị nhỏ nhất (ứng với khoảng cách đến Mặt trăng mới) được tính giống như trên cho khoảng cách xa nhất từ Trái đất đến Mặt trăng, 407 000 km (theo tài liệu tra cứu của NASA) cộng thêm độ sáng do ánh sáng từ Trái đất chiếu lên Mặt trăng. Độ sáng do ánh sáng Trái đất gây ra được tính bằng công thức [ suất phản chiếu của Trái đất × (bán kính Trái đất / bán kính quỹ đạo Mặt trăng)2 ] × độ sáng trực tiếp do Mặt trời chiếu vào Mặt trăng tròn. Ở đây, suất phản chiếu của Trái đất = 0,367; bán kính Trái đất = (bán kính cực × bán kính xích đạo)½ = 6 367 km.
  12. Lucey và các tác giả khác (2006) ghi giá trị 107 hạt cm−3 vào ban ngày và 105 hạt cm−3 vào ban đêm. Với nhiệt độ bề mặt ở xích đạo 390 K vào ban ngày và 100 K vào ban đêm, định luật khí lý tưởng cho ra áp suất được ghi ở hộp thông tin: 10−7 Pa vào ban ngày và 10−10 Pa vào ban đêm.

Tham khảo

  1. Kopal, 2012, tr.14, tr.55, tr.156, tr.285
  2. a b P. J. Stooke, Neolithic Lunar Maps at Knowth and Baltinglass, Ireland, Tạp chí Journal for the History of Astronomy, 1994, tr.39-55, Bibcode 1994JHA....25...39S
  3. a b c d e f g h i Phạm Viết Trinh và các tác giả khác, 1999, tr.223-224
  4. a b c d e f g h Ian Garrick-Bethell và các tác giả khác,The tidal-rotational shape of the Moon and evidence for polar wander, tạp chí Nature, 2014, số 512, quyển 7513, tr.181–184, DOI 10.1038/nature13639, pmid 25079322, Bibcode 2014Natur.512..181G, s2cid 4452886, ngày truy cập 9 tháng 12 năm 2020
  5. a b c d Fraknoi, Morrison và Wolff, 2016, tr.304
  6. a b c d e f g h i j Fraknoi, Morrison và Wolff, 2016, tr.309
  7. a b c d e S. Mighani và các tác giả khác, The end of the lunar dynamo, tạp chí Science Advances, 2020, số 6, quyển 1, tr.eaax0883, DOI 10.1126/sciadv.aax0883, pmid 31911941, pmc 6938704, Bibcode 2020SciA....6..883M
  8. a b c Nemchin, Timing of crystallization of the lunar magma ocean constrained by the oldest zircon, tạp chí Nature Geoscience, 2009, số 2, quyển 2, tr.133–136, DOI 10.1038/ngeo417, Bibcode 2009NatGe...2..133N, hdl 20.500.11937/44375
  9. Brent Dalrymple, The age of the Earth in the twentieth century: a problem (mostly) solved, Xuất bản phẩm đặc biệt của Hội Địa lý Luân Đôn, 2001, số 190, quyển 1, tr.205–221, DOI 10.1144/GSL.SP.2001.190.01.14, Bibcode 2001GSLSP.190..205D, s2cid 130092094
  10. a b Alex Halliday, Terrestrial accretion rates and the origin of the Moon, Earth and Planetary Science Letters, 28 tháng 2 năm 2000, số 176, quyển 1, tr.17-30, DOI 10.1016/S0012-821X(99)00317-9, Bibcode 2000E&PSL.176...17H
  11. a b c Dana Mackenzie, The Big Splat, or How Our Moon Came to Be, nhà xuất bản John Wiley & Sons, 21 tháng 7 năm 2003, ISBN 978-0-471-48073-0, tr.166–168, ngày truy cập 9 tháng 12 năm 2020
  12. a b c d e f Fraknoi, Morrison và Wolff, 2016, tr.123
  13. a b Kopal, 2012, tr.18
  14. a b Phạm Viết Trinh và các tác giả khác, 1999, tr.208-209
  15. a b c d e f g h Phạm Viết Trinh và các tác giả khác, 1999, tr.253-257
  16. a b c d e f g h i j Fraknoi, Morrison và Wolff, 2016, tr.125-127
  17. a b c d e f g h Fraknoi, Morrison và Wolff, 2016, tr.128
  18. a b c Fraknoi, Morrison và Wolff, 2016, tr.19
  19. a b Fraknoi, Morrison và Wolff, 2016, tr.410, hình 12.2
  20. Fraknoi, Morrison và Wolff, 2016, tr.310-312
  21. Fraknoi, Morrison và Wolff, 2016, tr.303
  22. a b c d Phạm Viết Trinh và các tác giả khác, 1999, tr.226
  23. a b c d e Fraknoi, Morrison và Wolff, 2016, tr.314
  24. Asif Siddiqi, Beyond Earth : a chronicle of deep space exploration, 1958–2016, Văn phòng Chương trình Lịch sử NASA, Tái bản lần thứ 2, 2018, tr.12-13, LCCN 2017059404, ISBN 9781626830431
  25. a b c d e f Fraknoi, Morrison và Wolff, 2016, tr.305-308
  26. a b c d Fraknoi, Morrison và Wolff, 2016, tr.120-121
  27. a b c David Seed, Moon on the mind: two millennia of lunar literature, tạp chí Nature, số 571, quyển 7764, ngày 9 tháng 7 năm 2019, tr.172–173, DOI 10.1038/d41586-019-02090-w, truy cập ngày 13 tháng 12 năm 2020
  28. Tamara Green, The City of the Moon God: Religious Traditions of Harran, Nhà xuất bản BRILL, 1992, ISBN 9789004095137, 232 trang
  29. a b c d e f g h i Asphaug, Impact Origin of the Moon?, Annual Review of Earth and Planetary Sciences, 2014, số 42, p.551-578, DOI 10.1146/annurev-earth-050212-124057
  30. Salmon và Canup, Lunar accretion from a Roche-interior fluid disk, Astrophysical Journal, 20 tháng 11 năm 2012, số 760, quyển 83, DOI 10.1088/0004-637X/760/1/83
  31. Maxwell Thiemens, Peter Sprung và các tác giả khác, Early Moon formation inferred from hafnium–tungsten systematics, Tạp chí Nature Geoscience, 2019, số 12, tr.696-700, DOI 10.1038/s41561-019-0398-3, ngày truy cập 17 tháng 10 năm 2020
  32. a b c Fraknoi, Morrison và Wolff, 2016, tr.320
  33. A.B. Binder, On the origin of the Moon by rotational fission, tạp chí The Moon, 1974, số 11, quyển 2, tr.53–76, Bibcode 1974Moon...11...53B, DOI 10.1007/BF01877794, s2cid 122622374
  34. a b c d e Rick Stroud, The Book of the Moon, Nhà xuất bản Walken and Company, 2009, tr.25, ISBN 978-0-8027-1734-4, truy cập ngày 21 tháng 12 năm 2020
  35. H.E. Mitler, Formation of an iron-poor moon by partial capture, or: Yet another exotic theory of lunar origin, tạp chí Icarus, 1975, số 24, quyển 2, tr.256–268, Bibcode 1975Icar...24..256M, DOI 10.1016/0019-1035(75)90102-5
  36. Stevenson, Origin of the moon–The collision hypothesis, tạp chí Annual Review of Earth and Planetary Sciences, 1987, số 15, quyển 1, tr.271–315, Bibcode 1987AREPS..15..271S, DOI 10.1146/annurev.ea.15.050187.001415, s2cid 53516498, ngày truy cập 9 tháng 12 năm 20202
  37. a b c d e Fraknoi, Morrison và Wolff, 2016, tr.321
  38. a b Canup và Asphaug, Origin of the Moon in a giant impact near the end of Earth's formation, tạp chí Nature, 2001, số 412, quyển 6848, tr.708–712, DOI 10.1038/35089010, pmid 11507633, Bibcode 2001Natur.412..708C, s2cid 4413525
  39. Bottke và các tác giả khác, Dating the Moon-forming impact event with asteroidal meteorites, tạp chí Science, 2015, số 348, tr.321-323, DOI 10.1126/science.aaa0602, truy cập ngày 9 tháng 12 năm 2020
  40. Fraknoi, Morrison và Wolff, 2016, tr.510
  41. Brian Tonks và Jay Melosh, Magma ocean formation due to giant impacts, Journal of Geophysical Research, 1993, số 98, quyển E3, tr.5319–5333, Bibcode 1993JGR....98.5319T, DOI 10.1029/92JE02726
  42. Warren, The magma ocean concept and lunar evolution, tạp chí Annual Review of Earth and Planetary Sciences, 1985, số 13, quyển 1, tr.201–240, Bibcode 1985AREPS..13..201W, DOI 10.1146/annurev.ea.13.050185.001221
  43. a b Daniel Clery, Impact Theory Gets Whacked, tạp chí Science, 11 tháng 10 năm 2013, số 342, quyển 6155, tr.183–185, DOI 10.1126/science.342.6155.183, Bibcode 2013Sci...342..183C, pmid 24115419
  44. Wiechert và các tác giả khác, Oxygen Isotopes and the Moon-Forming Giant Impact, tạp chí Science, tháng 10 năm 2001, số 294, quyển 12, tr.345–348, DOI 10.1126/science.1063037, pmid 11598294, Bibcode 2001Sci...294..345W, s2cid 29835446
  45. a b Mathieu Touboul và các tác giả khác, Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals, tạp chí Nature, 2007, số 450, quyển 7173, tr.1206–1209, DOI 10.1038/nature06428, pmid 18097403, Bibcode 2007Natur.450.1206T, s2cid 4416259
  46. a b Junjun Zhang và các tác giả khác, The proto-Earth as a significant source of lunar material, tạp chí Nature Geoscience, 2012, số 5, tr.251–255, DOI 10.1038/ngeo1429
  47. a b c d Alessandra Mastrobuono-Battisti, Hagai Perets và Sean Raymond, A primordial origin for the compositional similarity between the Earth and the Moon, tạp chí Nature, 2015, số 520, tr.212–215, DOI 10.1038/nature14333
  48. Mathieu Touboul và các tác giả khác, Tungsten isotopic evidence for disproportional late accretion to the Earth and Moon, tạp chí Nature, 2015, số 520, tr.530-533, PMID 25855299, DOI 10.1038/nature14355
  49. Dauphas, The isotopic nature of the Earth’s accreting material through time, tạp chí Nature, 2017, số 541, tr.521–524, DOI 10.1038/nature20830
  50. a b Kaveh Pahlevan và David Stevenson, Equilibration in the Aftermath of the Lunar-forming Giant Impact, tạp chí Earth and Planetary Science Letters, tháng 10 năm 2007, số 262, quyển 3–4, tr.438–449, DOI 10.1016/j.epsl.2007.07.055, Bibcode 2007E&PSL.262..438P, arxiv 1012.5323, s2cid 53064179
  51. Melosh, An Isotopic Crisis for the Giant Impact Origin of the Moon?, Kỷ yếu Hội thảo Hàng năm lần thứ 72 của Hiệp hội Vẫn thạch, in trong Phụ trương của Tạp chí Meteoritics and Planetary Science, 2009, tr.5104, Bibcode 2009M&PSA..72.5104M
  52. Simon Lock và Sarah Stewart, The structure of terrestrial bodies: Impact heating, corotation limits, and synestias, tạp chí JGR Planets, tháng 5 năm 2017, số 122, quyển 5, tr.950-982, DOI 10.1002/2016JE005239
  53. Rufu, Aharonson và Perets, A multiple-impact origin for the Moon, tạp chí Nature Geoscience, 2017, số 10, tr.89–94, DOI 10.1038/ngeo2866
  54. a b c d Jutzi và Asphaug, Forming the lunar farside highlands by accretion of a companion moon, tạp chí Nature, 2011, số 476, tr.69–72
  55. Fraknoi, Morrison và Wolff, 2016, tr.412, bảng 12.1
  56. Fraknoi, Morrison và Wolff, 2016, tr.423
  57. a b c d e f g h i j k l m n o p q r s t u v w x y z Mark A. Wieczorek, Bradley L. Jolliff và các tác giả khác, The constitution and structure of the lunar interior, tạp chí Reviews in Mineralogy and Geochemistry, 2006, số 60, quyển 1, tr.221–364, DOI 10.2138/rmg.2006.60.3, Bibcode 2006RvMG...60..221W, S2cid 130734866, ngày truy cập 9 tháng 12 năm 2020
  58. a b c d Weber và các tác giả khác, Seismic Detection of the Lunar Core, tạp chí Science, 21 tháng 1 năm 2011, số 331, quyển 6015, tr.309–312, DOI 10.1126/science.1199375, pmid 21212323, Bibcode 2011Sci...331..309W, s2cid 206530647, ngày truy cập 9 tháng 12 năm 2020
  59. a b Williams và các tác giả khác, Lunar laser ranging science: Gravitational physics and lunar interior and geodesy, tạp chí Advances in Space Research, 2006, số 37, quyển 1 , tr.67–71, Bibcode 2006AdSpR..37...67W, DOI 10.1016/j.asr.2005.05.013, arxiv gr-qc/0412049|s2cid=14801321
  60. a b c d e f Fraknoi, Morrison và Wolff, 2016, tr.311
  61. a b c Lucey và các tác giả khác 2006
  62. a b c d Shearer và các tác giả khác, Thermal and magmatic evolution of the Moon, tạp chí Reviews in Mineralogy and Geochemistry, 2006, số 60, quyển 1, tr.365–518, DOI 10.2138/rmg.2006.60.4, Bibcode 2006RvMG...60..365S, s2cid 129184748, truy cập ngày 10 tháng 1 năm 2021
  63. a b c Fraknoi, Morrison và Wolff, 2016, tr.310
  64. a b Stuart Taylor, Lunar Science: a Post-Apollo View, Pergamon Press, Oxford, 1975, tr.64, ISBN 978-0-08-018274-2, Bibcode 1975lspa.book.....T
  65. a b c d Neumann, Mazarico và các tác giả khác, Lunar Orbiter Laser Altimeter (LOLA) Data Products and Contributions, Hội thảo Dữ liệu Hành tinh lần thứ 4, 18-20 tháng 6 năm 2019, Arizona, Hoa Kỳ, Bibcode: 2019LPICo2151.7063J
  66. Petro và Pieters, Surviving the heavy bombardment: Ancient material at the surface of South Pole-Aitken Basin, tạp chí Geophysical Research, 5 tháng t5 năm 2004, số 109, quyển E6, tr.E06004, Bibcode 2004JGRE..109.6004P, DOI 10.1029/2003je002182
  67. a b Fortezzo, Spudis và Harrel, Release of the Digital Unified Global Geologic Map of the Moon at 1:5,000,000-Scale, hội thảo lần thứ 51 về Khoa học Mặt trăng và Hành tinh, 16-20 tháng 3 năm 2020, Texas, Bibcode: 2020LPI....51.2760F
  68. Wilhelms, 1987, tr.277 Hình 14.3 và tr.278 Bảng 14.1
  69. Spudis và các tác giả khác, Topography of the South Polar Region from Clementine Stereo Imaging, Hội thảo chủ đề 'New Views of the Moon: Integrated Remotely Sensed, Geophysical, and Sample Datasets', tháng 1 năm 1998, tr.69, Bibcode 1998nvmi.conf...69S
  70. a b c Spudis và các tác giả khác, Ancient Multiring Basins on the Moon Revealed by Clementine Laser Altimetry, tạp chí Science, 1994, số 266, quyển 5192, tr.1848–1851, DOI 10.1126/science.266.5192.1848, Bibcode 1994Sci...266.1848S, pmid 17737079, s2cid 41861312
  71. Pieters và các tác giả khác, Mineralogy of the Mafic Anomaly in the South Pole‐Aitken Basin: Implications for excavation of the lunar mantle, tạp chí Geophysical Research Letters, 1997, số 24, quyển 15, tr.1903–1906, DOI 10.1029/97GL01718, Bibcode 1997GeoRL..24.1903P, hdl 2060/19980018038
  72. Schultz, Forming the south-pole Aitken basin – The extreme games, tháng 3 năm 1997, số 28, tr.1259, Báo cáo Hội nghị Hàng năm về Khoa học Mặt trăng và Hành tinh lần thứ 28, Bibcode 1997LPI....28.1259S
  73. a b c d e f Fraknoi, Morrison và Wolff, 2016, tr.312
  74. a b c Head và các tác giả khác, Orientale and South Pole-Aitken Basins on the Moon: Preliminary Galileo Imaging Results, Báo cáo Hội nghị Khoa học Mặt trăng và Hành tinh lần thứ 22, 1991, Houston, Texas, tr.23-26, Bibcode 1991LPICo.758...23H
  75. Phạm Viết Trinh và các tác giả khác, 1999, tr.225
  76. Archinal và các tác giả khác, Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2015, tạp chí Celestial Mechanics and Dynamical Astronomy, 2018, số 130, quyển 22, DOI 10.1007/s10569-017-9805-5
  77. Merton Davies và Tim Colvin, Lunar coordinates in the regions of the Apollo landers, tạp chí Geophysical Research, 25 tháng 8 năm 2000, số 105, quyển E8, tr.20277-20280, DOI 10.1029/1999JE001165
  78. Habibullin, On the Systems of Selenographic Coordinates, Their Determination and Terminology, The Moon, số 3, 1971, tr.231-238, Bibcode 1971Moon....3..231C
  79. Wollenhaupt, Osburn, và Ransford, Comments on the figure of the moon from apollo landmark tracking, tạp chí The Moon, 1972, số 5, tr.149–157, DOI 10.1007/bf00562109
  80. Thomas Watters và các tác giả khác, Evidence of Recent Thrust Faulting on the Moon Revealed by the Lunar Reconnaissance Orbiter Camera, tạp chí Science, 20 tháng 8 năm 2010, số 329, quyển 5994, tr.936-940, DOI: 10.1126/science.1189590
  81. Thomas Watters, A case for limited global contraction of Mercury, tạp chí Communications Earth & Environment, 14 tháng 1 năm 2021, số 2, bài số 9, DOI 10.1038/s43247-020-00076-5
  82. Nathan Williams và các tác giả khác, Evidence for recent and ancient faulting at Mare Frigoris and implications for lunar tectonic evolution, tạp chí Icarus, 1 tháng 7 năm 2019, số 326, tr.151-161, DOI 10.1016/j.icarus.2019.03.002
  83. a b c Thomas Watters và các tác giả khác, Shallow seismic activity and young thrust faults on the Moon, Nature Geoscience, 13 tháng 5 năm 2019, số 12, quyển 6, tr.411–417, DOI 10.1038/s41561-019-0362-2, Bibcode 2019NatGe..12..411W, s2cid 182137223
  84. Wlasuk, 2000, tr.19-20
  85. Gillis và Spudis, The Composition and Geologic Setting of Lunar Far Side Maria, tạp chí Lunar and Planetary Science, 1996, số 27, tr.413, Bibcode 1996LPI....27..413G
  86. Lionel Wilson và James Head, Lunar Gruithuisen and Mairan domes: Rheology and mode of emplacement, Journal of Geophysical Research, 2003, số 108, quyển E2, tr.5012, DOI 10.1029/2002JE001909, Bibcode 2003JGRE..108.5012W, citeseerx 10.1.1.654.9619
  87. Lawrence và các tác giả khác, Global Elemental Maps of the Moon: The Lunar Prospector Gamma-Ray Spectrometer, tạp chí Science, 11 tháng 8 năm 1998, số 281, quyển 5382, tr.1484–1489, DOI 10.1126/science.281.5382.1484, PMID 9727970, Bibcode 1998Sci...281.1484L
  88. Hiesinger và các tác giả khác, Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Numbium, Mare Cognitum, and Mare Insularum, Journal of Geophysical Research, 2003, số 108, quyển E7, tr.1029, DOI 10.1029/2002JE001985, Bibcode 2003JGRE..108.5065H, s2cid 9570915
  89. a b c Peter Schultz, Matthew Staid và Carlé Pieters, Lunar activity from recent gas release, tạp chí Nature, 2006, số 444, tr.184–186, DOI 10.1038/nature05303
  90. a b Sarah Braden và các tác giả khác, Evidence for basaltic volcanism on the Moon within the past 100 million years, tạp chí Nature Geoscience, 2014, số 7, tr.787–791, DOI 10.1038/ngeo2252
  91. Mark Wieczorek và Roger Phillips, The “Procellarum KREEP Terrane”: Implications for mare volcanism and lunar evolution, Journal of Geophysical Research: Planets, 25 tháng 8 năm 2000, số 105, quyển E8, tr.20417-20430, DOI 10.1029/1999JE001092
  92. Yuichiro Cho và các tác giả khác, Young mare volcanism in the Orientale region contemporary with the Procellarum KREEP Terrane (PKT) volcanism peak period 2 b.y. ago, Geophysical Research Letters, 2012, số 39, quyển 11, tr.L11203, Bibcode 2012GeoRL..3911203C, DOI 10.1029/2012GL051838
  93. Collins, Melosh và Osinski, The Impact-Cratering Process, tạp chí Elements, 2012, số 8, quyển 1, tr.25–30, DOI 10.2113/gselements.8.1.25
  94. Wlasuk, 2000, tr.13
  95. Wilhelms, 1987, tr.123
  96. a b Wilhelms, 1987, tr.249
  97. Fraknoi, Morrison và Wolff, 2016, tr.303tr.315
  98. Wilhelms, 1987, tr.168-169, tr.177-178tr.212
  99. Wilhelms, 1987, tr.135
  100. Wilhelms, 1987, tr.129
  101. Fraknoi, Morrison và Wolff, 2016, tr.315
  102. a b c d e f Fraknoi, Morrison và Wolff, 2016, tr.316
  103. a b Schleppi và các tác giả khác, Manufacture of glass and mirrors from lunar regolith simulant, Journal of Materials Science, 2019, số 54, tr.3726–3747, DOI 10.1007/s10853-018-3101-y
  104. Heiken, Vaniman và French, 1991, tr.88 và Hình 4.22 tr.93tr.286
  105. Heiken, Vaniman và French, 1991, tr.92 và Hình 4.22 tr.93
  106. Heiken, Vaniman và French, 1991, tr.337
  107. a b Fraknoi, Morrison và Wolff, 2016, tr.319
  108. Cohen, Swindle và Kring, Support for the Lunar Cataclysm Hypothesis from Lunar Meteorite Impact Melt Ages, Science, 1 tháng 12 năm 2000, số 290, quyển 5497, tr.1754-1756, DOI: 10.1126/science.290.5497.1754
  109. Hartmann, Quantin và Mangold, Possible long-term decline in impact rates: 2. Lunar impact-melt data regarding impact history, tạp chí Icarus, 2007, số 186, quyển 1, tr.11–23, DOI 10.1016/j.icarus.2006.09.009, Bibcode 2007Icar..186...11H
  110. a b Speyerer và các tác giả khác, 2016, phần tóm tắt
  111. Speyerer và các tác giả khác, 2016, tr.216-217 và phần tóm tắt
  112. a b c d e Garrick-Bethell, Head và Pieters, Spectral properties, magnetic fields, and dust transport at lunar swirls, tạp chí Icarus, số 212, quyển 2, tr.480-492, tháng 4 năm 2011, DOI: 10.1016/j.icarus.2010.11.036, Bibcode: 2011Icar..212..480G
  113. Mazarico và các tác giả khác, Illumination conditions of the lunar polar regions using LOLA topography, tạp chí Icarus, 2011, số 211, quyển 2, tr.1066-1081, DOI 10.1016/j.icarus.2010.10.030
  114. a b c d Shuai Li và các tác giả khác, Direct evidence of surface exposed water ice in the lunar polar regions, Proceedings of the National Academy of Sciences, tháng 8 năm 2018, số 115, quyển 36, tr.8907–8912, DOI 10.1073/pnas.1802345115, pmid 30126996, pmc 6130389, Bibcode 2018PNAS..115.8907L
  115. a b Watson, Murray và Brown, The behavior of volatiles on the lunar surface, Journal of Geophysical Research, tháng 9 năm 1961, số 66, quyển 9, tr.3033-3045, DOI 10.1029/JZ066i009p03033
  116. a b DeSimone và Orlando, Mechanisms and cross sections for water desorption from a lunar impact melt brecciaa, Journal of Geophysical Research: Planet, số 119, tr.884–893, DOI 10.1002/2013JE004599
  117. DeSimone và Orlando, Photodissociation of water and O(3PJ) formation on a lunar impact melt breccia, Journal of Geophysical Research: Planet, số 119, tr.894–904, DOI 10.1002/2013JE004598
  118. William Ward, Past Orientation of the Lunar Spin Axis, tạp chí Science, 1 tháng 8 năm 1975, số 189, quyển 4200, tr.377–379, DOI 10.1126/science.189.4200.377, pmid 17840827, bibcode 1975Sci...189..377W, s2cid 21185695
  119. a b c Robert Tyler, On the Tidal History and Future of the Earth–Moon Orbital System, The Planetary Science Journal, 6 tháng 4 năm 2021, số 2, quyển 2, bài số 70, DOI 10.3847/PSJ/abe53f
  120. Margot và các tác giả khác, Topography of the Lunar Poles from Radar Interferometry: A Survey of Cold Trap Locations, tạp chí Science, 4 tháng 6 năm 1999, số 284, quyển 5420, tr.1658–1660, DOI 10.1126/science.284.5420.1658, pmid 10356393, bibcode 1999Sci...284.1658M, citeseerx 10.1.1.485.312
  121. a b Ben Bussey và các tác giả khác, Permanent shadow in simple craters near the lunar poles, Geophysical Research Letters, 2003, số 30, quyển 9, DOI 10.1029/2002GL016180
  122. Erik Seedhouse, Lunar Outpost: The Challenges of Establishing a Human Settlement on the Moon, Springer Praxis, Đức, 2009, tr.138, ISBN 978-0-387-09746-6
  123. Feldman và các tác giả khác, Fluxes of Fast and Epithermal Neutrons from Lunar Prospector: Evidence for Water Ice at the Lunar Poles, tạp chí Science, 1998, pmid 9727973, số 281, quyển 5382, tr.1496–1500, DOI 10.1126/science.281.5382.1496, Bibcode 1998Sci...281.1496F, s2cid 9005608
  124. Alberto Saal và các tác giả khác, Volatile content of lunar volcanic glasses and the presence of water in the Moon's interior, tạp chí Nature, 2008, số 454, quyển 7201, tr.192–195, pmid 18615079, DOI 10.1038/nature07047, Bibcode 2008Natur.454..192S, s2cid 4394004
  125. Pieters và các tác giả khác, Character and Spatial Distribution of OH/H2O on the Surface of the Moon Seen by M3 on Chandrayaan-1, tạp chí Science, 2009, số 326, quyển 5952, tr.568–572, DOI 10.1126/science.1178658, pmid 19779151, Bibcode 2009Sci...326..568P, s2cid 447133
  126. Anthony Colaprete và các tác giả khác, Detection of Water in the LCROSS Ejecta Plume, tạp chí Science, 22 tháng 10 năm 2010, số 330, quyển 6003, tr.463–468, pmid 20966242, DOI 10.1126/science.1186986, Bibcode 2010Sci...330..463C, s2cid 206525375
  127. Erik Hauri và các tác giả khác, High Pre-Eruptive Water Contents Preserved in Lunar Melt Inclusions, tạp chí Science, 8 tháng 7 năm 2011, số 333, quyển 6039, tr.213–215, DOI 10.1126/science.1204626, pmid 21617039, Bibcode 2011Sci...333..213H, s2cid 44437587
  128. a b Honniball và các tác giả khác, Molecular water detected on the sunlit Moon by SOFIA, Nature Astronomy, 2021, số 5, tr.121–127, DOI 10.1038/s41550-020-01222-x
  129. Hayne và các tác giả khác, Micro cold traps on the Moon, Nature Astronomy, 2021, số 5, tr.169–175, DOI 10.1038/s41550-020-1198-9
  130. a b Muller và Sjogren, Mascons: lunar mass concentrations, tạp chí Science, 1968, số 161, quyển 3842.tr.680–684, DOI 10.1126/science.161.3842.680, pmid 17801458, Bibcode 1968Sci...161..680M, s2cid 40110502
  131. a b c Konopliv và các tác giả khác, Recent gravity models as a result of the Lunar Prospector mission, tạp chí Icarus, 2001, số 50, quyển 1, tr.1–18, DOI 10.1006/icar.2000.6573, Bibcode 2001Icar..150....1K, citeseerx 10.1.1.18.1930
  132. a b c d Maria Zuber và các tác giả khác, Gravity Field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) Mission, tạp chí Science, 8 tháng 2 năm 2013, số 339, quyển 6120, tr.668-671, DOI: 10.1126/science.1231507
  133. Richard Kerr, The Mystery of Our Moon's Gravitational Bumps Solved?, tạp chí Science, 12 tháng 4 năm 2013, số 340, quyển 6129, tr.138–139, DOI 10.1126/science.340.6129.138-a, pmid 23580504
  134. Thomas và McMann, US Spacesuits, Praxis Publishing, Chichester 2006, tr.362, ISBN 0-387-27919-9
  135. Garrick-Bethell và các tác giả khác, Early Lunar Magnetism, tạp chí Science, số 323, quyển 5912, tr.356–359, pmid 19150839, Bibcode 2009Sci...323..356G, s2cid 23227936, DOI 10.1126/science.1166804
  136. a b c Hood và Huang, Formation of magnetic anomalies antipodal to lunar impact basins: Two-dimensional model calculations, Journal of Geophysical Research, 1991, số 96, quyển B6, tr.9837–9846, DOI 10.1029/91JB00308, Bibcode 1991JGR....96.9837H
  137. a b c d e f Alan Stern, The lunar atmosphere: History, status, current problems, and context, Reviews of Geophysics, số 37, quyển 4, tháng 11 năm 1999, tr.453-491, DOI 10.1029/1999RG900005, Bibcode 1999RvGeo..37..453S, citeseerx 10.1.1.21.9994
  138. Ruth Globus, biên tập bởi Richard D. Johnson và Charles Holbrow, Space Settlements: A Design Study, Chương 5, Phụ lục J: Impact Upon Lunar Atmosphere, xuất bản bởi NASA, 1977, tr.113, ISBN 978-0825460142, LCCN 76600068
  139. a b c d Arlin Crotts, Lunar Outgassing, Transient Phenomena and The Return to The Moon, I: Existing Data, The Astrophysical Journal, 2008, số 687, quyển 1, tr.692–705, Bibcode 2008ApJ...687..692C, DOI 10.1086/591634, arxiv 0706.3949, s2cid 16821394
  140. a b c Michael Mendillo, The Atmosphere Of The Moon, tạp chí Earth, Moon, and Planets, 1999, số 85, tr.271–277, DOI 10.1023/A:1017032419247
  141. a b Lawson và các tác giả khác, Recent outgassing from the lunar surface: the Lunar Prospector alpha particle spectrometer, Journal of Geophysical Research, số 110, quyển E9, tr.1029, DOI 10.1029/2005JE002433, Bibcode 2005JGRE..11009009L
  142. Benna và các tác giả khác, Variability of helium, neon, and argon in the lunar exosphere as observed by the LADEE NMS instrument, Geophysical Research Letters, 28 tháng 5 năm 2015, số 42, quyển 10, tr.3723-3729, DOI 10.1002/2015GL064120
  143. a b Sridharan và các tác giả khác, 'Direct' evidence for water (H2O) in the sunlit lunar ambience from CHACE on MIP of Chandrayaan I , Planetary and Space Science, 2010, tr.947–950, số 58, quyển 6, DOI 10.1016/j.pss.2010.02.013, Bibcode 2010P&SS...58..947S
  144. Mitchell và các tác giả khác, Global mapping of lunar crustal magnetic fields by Lunar Prospector, tạp chí Icarus, 2008, số 194, quyển 2, tr.401–409, DOI 10.1016/j.icarus.2007.10.027
  145. a b c d e f g h Horányi và các tác giả khác, A permanent, asymmetric dust cloud around the Moon, tạp chí Nature, 18 tháng 6 năm 2015, số 522, quyển 7556, tr.324–326, DOI 10.1038/nature14479, Bibcode 2015Natur.522..324H, pmid 26085272, s2cid 4453018
  146. a b c Needham và Kring, Lunar volcanism produced a transient atmosphere around the ancient Moon, Earth and Planetary Science Letters, 15 tháng 11 năm 2017, số 478, tr.175-178, DOI 10.1016/j.epsl.2017.09.002
  147. D’Ortenzio và các tác giả khác, Operating LADEE: Mission architecture, challenges, anomalies, and successes, 2015 IEEE Aerospace Conference, DOI 10.1109/aero.2015.7118961
  148. Phạm Viết Trinh và các tác giả khác, 1999, tr.46
  149. a b c Gerard và Stefan, Time in Powers of Ten: Natural Phenomena and Their Timescales, nhà xuất bản World Scientific, 12 tháng 5 năm 2014, tr.24, ISBN 9789814494939
  150. Habibullin, Gurshtein & Sanovich, On the problem of lunar time, tạp chí The Moon, 1974, số 11, tr.29–34, DOI 10.1007/BF01877791
  151. a b Poulet và các tác giả khác, Greenhouse Modules and Regenerative Life-Support Systems for Space, AIAA SPACE 2013 Conference and Exposition, DOI 10.2514/6.2013-5398
  152. Phạm Viết Trinh và các tác giả khác, 1999, tr.45
  153. a b c d e f Wieczorek và Le Feuvre, Did a large impact reorient the Moon?, Icarus, Elsevier, 2009, số 200, quyển 2, tr.358-366, DOI 10.1016/j.icarus.2008.12.017, hal 00517248f
  154. Kopal, 2012, tr.10
  155. a b Phạm Viết Trinh và các tác giả khác, 1999, tr.331
  156. a b c d e Paige và các tác giả khác, The Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment, tạp chí Space Science Reviews, 2010, số 150, tr.125–160, DOI 10.1007/s11214-009-9529-2
  157. Fraknoi, Morrison và Wolff, 2016, tr.108
  158. a b c Bussey và các tác giả khác, Constant illumination at the lunar north pole, Nature, 2005, số 434, tr.842, DOI 10.1038/434842a
  159. a b c Speyerer và Robinson, Persistently illuminated regions at the lunar poles: Ideal sites for future exploration, Icarus, 2013, số 222, quyển 1, tr.122-136, DOI 10.1016/j.icarus.2012.10.010
  160. Spudis và các tác giả khác, Geology of Shackleton Crater and the south pole of the Moon, Geophysical Research Letters, tháng 7 năm 2008, số 35, quyển 14, bài số L14201, DOI 10.1029/2008GL034468
  161. Kopal, 2012, tr.3-5
  162. a b c Cox, 2000, tr.308-309
  163. Murphy, Lunar laser ranging: the millimeter challenge, Reports on Progress in Physics, 2013, số 76, quyển 7, bài số 076901, arXiv 1309.6294. Bibcode 2013RPPh...76g6901M, DOI 10.1088/0034-4885/76/7/076901, PMID 23764926, S2CID 15744316
  164. a b c d e f Jean Meeus, Les périgées et les apogées de la Lune, tạp chí L'Astronomie, tháng 12 năm 1986, số 100, tr.571-574, Bibcode 1986LAstr.100..571M
  165. a b Cox, 2000, tr.16
  166. a b Rachel Klima và Jordan Bretzfelder, The Moon, Encyclopedia of Geology (tái bản lần thứ 2), Academic Press, 2021, tr.86-93, DOI 10.1016/B978-0-08-102908-4.00147-8 ISBN 9780081029091
  167. a b Fraknoi, Morrison và Wolff, 2016, tr.236-237
  168. a b Fraknoi, Morrison và Wolff, 2016, tr.410
  169. Fraknoi, Morrison và Wolff, 2016, tr.389
  170. a b Phạm Viết Trinh và các tác giả khác, 1999, tr.267-268
  171. Gabriele Andreatta & Kristin Tessmar-Raible, The Still Dark Side of the Moon: Molecular Mechanisms of Lunar-Controlled Rhythms and Clocks, Journal of Molecular Biology, số 432, quyển 12, 29 tháng 5 năm 2020, tr.3525-3546, DOI 10.1016/j.jmb.2020.03.009
  172. Kopal, 2012, tr.10
  173. Simon và các tác giả khác, Numerical expressions for precession formulae and mean elements for the Moon and the planets, Astronomy and Astrophysics, tháng 2 năm 1994, số 282, tr.663.
  174. V V Beletsky, Essays on the Motion of Celestial Bodies, nhà xuất bản Springer Science & Business Media, 2001, tr.183, ISBN 978-3-7643-5866-2
  175. a b c US Government Publishing Office, Astronomical Almanac For The Year 2020, U.S. Government Printing Office, 2019, ISBN 9780707746005
  176. a b c US Government Publishing Office, Astronomical Almanac For The Year 2021, U.S. Government Printing Office, 2020, ISBN 9780707746159
  177. a b c d e f Stuart Ross Taylor, The Moon, Encyclopedia of the Solar System, Academic Press, 2007, tr.227–250, DOI 10.1016/b978-012088589-3/50016-5, ISBN 9780120885893
  178. a b Fraknoi, Morrison và Wolff, 2016, tr.426-432
  179. Moebs, Ling và Sanny, 2016, tr.444-445
  180. Cox, 2000, tr.245
  181. Moebs, Ling và Sanny, 2016, tr.630
  182. a b c d Moebs, Ling và Sanny, 2016, tr.661-662
  183. a b c d Moebs, Ling và Sanny, 2016, tr.665
  184. a b Siegler và các tác giả khác, Lunar true polar wander inferred from polar hydrogen, tạp chí Nature, 2016, số 531, tr.480–484, DOI 10.1038/nature17166
  185. a b Agnew, chương 3.06 - Earth Tides, sách Treatise on Geophysics, tái bản lần thứ 2, nhà xuất bản Elsevier, 2015, tr.151-178, ISBN 9780444538031, DOI 10.1016/B978-0-444-53802-4.00058-0
  186. Andrault và các tác giả khác, The deep Earth may not be cooling down, Earth and Planetary Science Letters, số 443, tháng 6 năm 2016, tr.195-203, DOI 10.1016/j.epsl.2016.03.020
  187. Yaemsiri và các tác giả khác, Growth rate of human fingernails and toenails in healthy American young adults, Journal of the European Academy of Dermatology and Venereology, tháng 4 năm 2010, số 24, quyển 4, tr.420-423,PMID 19744178, DOI 10.1111/j.1468-3083.2009.03426.x
  188. Murray và Dermott, 1999, tr.184
  189. a b c d Schröder và Smith, Distant future of the Sun and Earth revisited, Monthly Notices of the Royal Astronomical Society, tháng 5 năm 2008, số 386, quyển 1, tr.155–163, DOI 10.1111/j.1365-2966.2008.13022.x
  190. a b c d Williams và Boggs, Tides on the Moon: Theory and determination of dissipation, Journal of Geophysical Research: Planets, 2015, số 120, tr.689–724, DOI 10.1002/2014JE004755
  191. a b c Murray và Dermott, 1999, tr.166-167
  192. a b Latham và các tác giả khác, Moonquakes and lunar tectonism, tạp chí Earth, Moon, and Planets, 1972, số 4, quyển 3–4, tr.373–382, DOI 10.1007/BF00562004, Bibcode 1972Moon....4..373L, S2CID 120692155
  193. a b c Nakamura, Shallow moonquakes: how they compare with earth-quakes, Hội thảo Khoa học Mặt trăng và Hành tinh lần thứ 11, 17-21 tháng 3 năm 1980, Kỷ yếu số 3 (A82-22351 09-91), Nhà xuất bản Pergamon, New York, 1980, tr.1847-1853, Bibcode 1980LPSC...11.1847N
  194. a b Lionel Warner, Astronomy for the southern hemisphere: A practical guide to the night sky, nhà xuất bản A. H. & A. W. Reed, 1 tháng 1 năm 1975, tr.25, ISBN 9780589008642
  195. a b c d Cox, 2000, tr.308-309 & tr.340
  196. a b c Harald Hiesinger và Ralf Jaumann, Chương 23 The Moon, của sách Encyclopedia of the Solar System (tái bản lần thứ 3), Elsevier, 2014, tr.493-538, ISBN 9780124158450, DOI 10.1016/B978-0-12-415845-0.00023-2
  197. a b Fraknoi, Morrison và Wolff, 2016, tr.124
  198. Heiken, Vaniman và French, 1991, tr.27
  199. a b Heiken, Vaniman và French, 1991, tr.59
  200. Sen và Roesler, Aging albedo model for asphalt pavement surfaces, Journal of Cleaner Production, 2016, số 117, tr.169–175, DOI 10.1016/j.jclepro.2016.01.019
  201. a b Buratti, Hillier và Wang, The Lunar Opposition Surge: Observations by Clementine, Icarus, tháng 12 năm 1996, số 124, quyển 2, tr.490-499, DOI 10.1006/icar.1996.0225, Bibcode 1996Icar..124..490B
  202. Marc Albert, Occlusion, transparency, and lightness, Vision Research, số 47, quyển 24, tháng 11 năm 2007, tr.3061-3069, DOI 10.1016/j.visres.2007.06.004
  203. Maurice Hershenson, The Moon illusion, nhà xuất bản Routledge, 1989, tr.5, ISBN 978-0-8058-0121-7
  204. a b c Wlasuk, 2000, tr.8
  205. a b c James Kaler, The Ever-Changing Sky: A Guide to the Celestial Sphere, Nhà xuất bản Đại học Cambridge, tháng 3 năm 2002, tr.51, tr.60, tr.224 & tr.259, ISBN: 9780521499187
  206. Phạm Viết Trinh và các tác giả khác, 1999, tr.99
  207. Last và các tác giả khác, Moonlight Drives Ocean-Scale Mass Vertical Migration of Zooplankton during the Arctic Winter, Current Biology, 7 tháng 1 năm 2016, số 26, quyển 2, tr.244-251, DOI 10.1016/j.cub.2015.11.038
  208. a b James Welsh, Commentary: Are Children Like Werewolves? Full Moon and Its Association with Sleep and Activity Behaviors in an International Sample of Children, Frontiers in Pediatrics, 31 tháng 8 năm 2016, số 4, tr.94, DOI 10.3389/fped.2016.00094
  209. Bhatia, Astronomy and astrophysics with elements of cosmology, CRC Press, 2001, tr.20, ISBN 978-0-8493-1013-3
  210. a b Marks và Stevens, Individual brightness functions, tạp chí Perception & Psychophysics, 1966, số 1, quyển 1, tr.17–24, DOI 10.3758/bf03207815
  211. a b c Cameron, Comparative analyses of observations of lunar transient phenomena, Icarus, 1972, số 16, quyển 2, tr.339–387, DOI 10.1016/0019-1035(72)90081-4
  212. a b Chambers, Chambers' encyclopaedia: a dictionary of universal knowledge for the people, nhà xuất bản W. and R. Chambers, 1874, quyển V, tr.206–207, lưu trữ tại Thư viện Quốc gia Úc với mã 1732162
  213. a b Walter Tape, Atmospheric Halos, American Geophysical Union, 1994, tr.45 ISBN 0-87590-834-9
  214. a b c d e f g h i j k l m n o p q r s t u Fraknoi, Morrison và Wolff, 2016, tr.129-133
  215. Phạm Viết Trinh và các tác giả khác, 1999, tr.318
  216. a b c Phạm Viết Trinh và các tác giả khác, 1999, tr.253
  217. a b c d Wlasuk, 2000, tr.141
  218. Joshua Winn, chương Transits and Occultations, sách Exoplanet, biên tập bởi Seager, Nhà xuất bản Đại học Arizona, Tucson, 15 tháng 1 năm 2011, ISBN 978-0816529452
  219. Miller, The Lunar Occultation Observer (LOCO) mission concept, UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XV, Kỷ yếu Hội nghị SPIE, số 6686, 2007, DOI 10.1117/12.735766
  220. a b Galilei Galileo, Sidereus nuncius, Venice, 1610, LCCN n85112441
  221. a b R. H. van Gent và A. Van Helden, Phần 5 Lunar, Solar, and Planetary Representations to 1650, Quyển 3 của sách The History of Cartography, Nhà xuất bản Đại học Chicago, 2007, ISBN 9780226907321
  222. Aaboe, A.; Britton, J.P.; Henderson, J.A.; Neugebauer, Otto; Sachs, A.J. (1991), "Saros Cycle Dates and Related Babylonian Astronomical Texts", Transactions of the American Philosophical Society, 81 (6): 1–75, doi:10.2307/1006543, JSTOR 1006543, One comprises what we have called "Saros Cycle Texts", which give the months of eclipse possibilities arranged in consistent cycles of 223 months (or 18 years).
  223. Sarma, K.V. (2008), Helaine Selin (bt.), "Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures", Encyclopaedia of the History of Science (lxb. 2), Springer: 317–321, Bibcode:2008ehst.book.....S, ISBN 978-1-4020-4559-2 Bỏ qua |contribution= (trợ giúp)
  224. a b c d Needham, Joseph (1986), Science and Civilization in China, Volume III: Mathematics and the Sciences of the Heavens and Earth, Taipei: Caves Books, ISBN 978-0-521-05801-8
  225. O'Connor, J.J.; Robertson, E.F. (tháng 2 năm 1999), Anaxagoras of Clazomenae, University of St Andrews, lưu trữ từ tài liệu gốc ngày 12 tháng 1 năm 2012, truy cập ngày 12 tháng 4 năm 2007
  226. Robertson, E.F. (tháng 11 năm 2000), Aryabhata the Elder, Scotland: School of Mathematics and Statistics, Đại học Thánh Andrews, lưu trữ từ tài liệu gốc ngày 11 tháng 7 năm 2015, truy cập ngày 15 tháng 4 năm 2010
  227. A.I. Sabra (2008), "Ibn Al-Haytham, Abū ʿAlī Al-Ḥasan Ibn Al-Ḥasan", Dictionary of Scientific Biography, Detroit: Charles Scribner's Sons, tr. 189–210, at 195
  228. Lewis, C.S. (1964), The Discarded Image, Cambridge: Cambridge University Press, tr. 108, ISBN 978-0-521-47735-2, lưu trữ từ tài liệu gốc ngày 17 tháng 6 năm 2020, truy cập ngày 11 tháng 11 năm 2019
  229. van der Waerden, Bartel Leendert (1987), "The Heliocentric System in Greek, Persian and Hindu Astronomy", Annals of the New York Academy of Sciences, 500 (1): 1–569, Bibcode:1987NYASA.500....1A, doi:10.1111/j.1749-6632.1987.tb37193.x, PMID 3296915
  230. Evans, James (1998), The History and Practice of Ancient Astronomy, Oxford & New York: Oxford University Press, tr. 71, 386, ISBN 978-0-19-509539-5
  231. "Discovering How Greeks Computed in 100 B.C.", The New York Times, ngày 31 tháng 7 năm 2008, lưu trữ từ tài liệu gốc ngày 4 tháng 12 năm 2013, truy cập ngày 9 tháng 3 năm 2014
  232. Van Helden, A. (1995), The Moon, Dự án Galileo, lưu trữ từ nguyên tác ngày 23 tháng 6 năm 2004, truy cập ngày 12 tháng 4 năm 2007
  233. Ewen A. Whitaker, Mapping and Naming the Moon: A History of Lunar Cartography and Nomenclature, Nhà xuất bản Đại học Cambridge, 2003, ISBN 978-0-521-54414-6
  234. Consolmagno, Guy J. (1996), "Astronomy, Science Fiction and Popular Culture: 1277 to 2001 (And beyond)", Leonardo, 29 (2): 127–132, doi:10.2307/1576348, JSTOR 1576348, S2CID 41861791
  235. a b c Spudis, P.D. (2004), Moon, World Book Online Reference Center, NASA, lưu trữ từ nguyên tác ngày 3 tháng 7 năm 2013, truy cập ngày 12 tháng 4 năm 2007
  236. Hall, R. Cargill (1977), "Appendix A: Lunar Theory Before 1964", NASA History Series. Lunar Impact: A History of Project Ranger., Washington, DC: Scientific and Technical Information Office, NASA, lưu trữ từ tài liệu gốc ngày 10 tháng 4 năm 2010, truy cập ngày 13 tháng 4 năm 2010
  237. Zak, Anatoly (2009), Russia's unmanned missions toward the Moon, lưu trữ từ tài liệu gốc ngày 14 tháng 4 năm 2010, truy cập ngày 20 tháng 4 năm 2010
  238. Rocks and Soils from the Moon, NASA, lưu trữ từ tài liệu gốc ngày 27 tháng 5 năm 2010, truy cập ngày 6 tháng 4 năm 2010
  239. Coren, M. (ngày 26 tháng 7 năm 2004), 'Giant leap' opens world of possibility, CNN, lưu trữ từ tài liệu gốc ngày 20 tháng 1 năm 2012, truy cập ngày 16 tháng 3 năm 2010
  240. "Record of Lunar Events, 24 July 1969", Apollo 11 30th anniversary, NASA, lưu trữ từ tài liệu gốc ngày 8 tháng 4 năm 2010, truy cập ngày 13 tháng 4 năm 2010
  241. Manned Space Chronology: Apollo_11, Spaceline.org, lưu trữ từ nguyên tác ngày 14 tháng 2 năm 2008, truy cập ngày 6 tháng 2 năm 2008
  242. "Apollo Anniversary: Moon Landing "Inspired World"", National Geographic, lưu trữ từ tài liệu gốc ngày 9 tháng 2 năm 2008, truy cập ngày 6 tháng 2 năm 2008
  243. Orloff, Richard W. (tháng 9 năm 2004) [First published 2000], "Apollo by the Numbers: A Statistical Reference", NASA History Division, Office of Policy and Plans, The NASA History Series, Washington, DC: NASA, ISBN 978-0-16-050631-4, LCCN 00061677, NASA SP-2000-4029, lưu trữ từ tài liệu gốc ngày 6 tháng 6 năm 2013, truy cập ngày 1 tháng 8 năm 2013 Bỏ qua |chapter= (trợ giúp)
  244. NASA news release 77-47 page 242 (PDF), ngày 1 tháng 9 năm 1977, lưu trữ (PDF) từ tài liệu gốc ngày 4 tháng 6 năm 2011, truy cập ngày 16 tháng 3 năm 2010
  245. Appleton, James; Radley, Charles; Deans, John; Harvey, Simon; Burt, Paul; Haxell, Michael; Adams, Roy; Spooner N.; Brieske, Wayne (1977), NASA Turns A Deaf Ear To The Moon, OASI Newsletters Archive, lưu trữ từ nguyên tác ngày 10 tháng 12 năm 2007, truy cập ngày 29 tháng 8 năm 2007
  246. Dickey, J.; et al. (1994), "Lunar laser ranging: a continuing legacy of the Apollo program", Science, 265 (5171): 482–490, Bibcode:1994Sci...265..482D, doi:10.1126/science.265.5171.482, PMID 17781305, S2CID 10157934, lưu trữ từ tài liệu gốc ngày 19 tháng 8 năm 2020, truy cập ngày 2 tháng 12 năm 2019
  247. Hiten-Hagomoro, NASA, lưu trữ từ nguyên tác ngày 14 tháng 6 năm 2011, truy cập ngày 29 tháng 3 năm 2010
  248. Clementine information, NASA, 1994, lưu trữ từ tài liệu gốc ngày 25 tháng 9 năm 2010, truy cập ngày 29 tháng 3 năm 2010
  249. Lunar Prospector: Neutron Spectrometer, NASA, 2001, lưu trữ từ nguyên tác ngày 27 tháng 5 năm 2010, truy cập ngày 29 tháng 3 năm 2010
  250. SMART-1 factsheet, Cơ quan Vũ trụ châu Âu, ngày 26 tháng 2 năm 2007, lưu trữ từ tài liệu gốc ngày 23 tháng 3 năm 2010, truy cập ngày 29 tháng 3 năm 2010
  251. China's first lunar probe ends mission, Xinhua, ngày 1 tháng 3 năm 2009, lưu trữ từ tài liệu gốc ngày 4 tháng 3 năm 2009, truy cập ngày 29 tháng 3 năm 2010
  252. KAGUYA Mission Profile, JAXA, lưu trữ từ tài liệu gốc ngày 28 tháng 3 năm 2010, truy cập ngày 13 tháng 4 năm 2010
  253. KAGUYA (SELENE) World's First Image Taking of the Moon by HDTV, Japan Aerospace Exploration Agency (JAXA) and Japan Broadcasting Corporation (NHK), ngày 7 tháng 11 năm 2007, lưu trữ từ tài liệu gốc ngày 16 tháng 3 năm 2010, truy cập ngày 13 tháng 4 năm 2010
  254. Mission Sequence, Indian Space Research Organisation, ngày 17 tháng 11 năm 2008, lưu trữ từ tài liệu gốc ngày 6 tháng 7 năm 2010, truy cập ngày 13 tháng 4 năm 2010
  255. Indian Space Research Organisation: Future Program, Indian Space Research Organisation, lưu trữ từ tài liệu gốc ngày 25 tháng 11 năm 2010, truy cập ngày 13 tháng 4 năm 2010
  256. India and Russia Sign an Agreement on Chandrayaan-2, Indian Space Research Organisation, ngày 14 tháng 11 năm 2007, lưu trữ từ nguyên tác ngày 17 tháng 12 năm 2007, truy cập ngày 13 tháng 4 năm 2010
  257. Lunar CRater Observation and Sensing Satellite (LCROSS): Strategy & Astronomer Observation Campaign, NASA, tháng 10 năm 2009, lưu trữ từ nguyên tác ngày 1 tháng 1 năm 2012, truy cập ngày 13 tháng 4 năm 2010
  258. Chang, Alicia (ngày 26 tháng 12 năm 2011), "Twin probes to circle moon to study gravity field", Phys.org, Associated Press, lưu trữ từ tài liệu gốc ngày 22 tháng 7 năm 2018, truy cập ngày 22 tháng 7 năm 2018
  259. Covault, C. (ngày 4 tháng 6 năm 2006), "Russia Plans Ambitious Robotic Lunar Mission", Aviation Week, lưu trữ từ tài liệu gốc ngày 12 tháng 6 năm 2006, truy cập ngày 12 tháng 4 năm 2007
  260. About the Google Lunar X Prize, X-Prize Foundation, 2010, lưu trữ từ nguyên tác ngày 28 tháng 2 năm 2010, truy cập ngày 24 tháng 3 năm 2010
  261. "An Important Update From Google Lunar XPRIZE", Google Lunar XPRIZE, ngày 23 tháng 1 năm 2018, lưu trữ từ nguyên tác ngày 24 tháng 1 năm 2018, truy cập ngày 12 tháng 5 năm 2018
  262. Wall, Mike (ngày 14 tháng 1 năm 2011), Mining the Moon's Water: Q&A with Shackleton Energy's Bill Stone, Space News
  263. "Moon Express Approved for Private Lunar Landing in 2017, a Space First", Space.com, lưu trữ từ nguyên tác ngày 12 tháng 7 năm 2017, truy cập ngày 13 tháng 7 năm 2017
  264. SpaceX to help Vodafone and Nokia install first 4G signal on the Moon | The Week UK, lưu trữ từ tài liệu gốc ngày 19 tháng 8 năm 2020, truy cập ngày 28 tháng 2 năm 2018
  265. Chang, Kenneth (ngày 29 tháng 11 năm 2018), "NASA's Return to the Moon to Start With Private Companies' Spacecraft", The New York Times (trong English), The New York Times Company, lưu trữ từ tài liệu gốc ngày 1 tháng 12 năm 2018, truy cập ngày 29 tháng 11 năm 2018
  266. Andrew Jones (ngày 23 tháng 9 năm 2020), China's Chang'e 3 lunar lander still going strong after 7 years on the moon, truy cập ngày 16 tháng 11 năm 2020
  267. Takahashi, Yuki (tháng 9 năm 1999), Mission Design for Setting up an Optical Telescope on the Moon, California Institute of Technology, lưu trữ từ nguyên tác ngày 6 tháng 11 năm 2015, truy cập ngày 27 tháng 3 năm 2011
  268. Chandler, David (ngày 15 tháng 2 năm 2008), "MIT to lead development of new telescopes on moon", MIT News, lưu trữ từ tài liệu gốc ngày 4 tháng 3 năm 2009, truy cập ngày 27 tháng 3 năm 2011
  269. Naeye, Robert (ngày 6 tháng 4 năm 2008), NASA Scientists Pioneer Method for Making Giant Lunar Telescopes, Goddard Space Flight Center, lưu trữ từ tài liệu gốc ngày 22 tháng 12 năm 2010, truy cập ngày 27 tháng 3 năm 2011
  270. Bell, Trudy (ngày 9 tháng 10 năm 2008), "Liquid Mirror Telescopes on the Moon", Science News, NASA, lưu trữ từ nguyên tác ngày 23 tháng 3 năm 2011, truy cập ngày 27 tháng 3 năm 2011
  271. Elizabeth Straughan, The smell of the Moon, Tạp chí Cultural Geographies, 2015, số 22, quyển 3, tr.409–426, DOI 10.1177/1474474014530963
  272. a b Leonard David (ngày 21 tháng 10 năm 2019), Moon Dust Could Be a Problem for Future Lunar Explorers, truy cập ngày 26 tháng 11 năm 2020
  273. Zheng, William (ngày 15 tháng 1 năm 2019), "Chinese lunar lander's cotton seeds spring to life on far side of the moon", South China Morning Post, truy cập ngày 26 tháng 11 năm 2020
  274. a b Can any State claim a part of outer space as its own?, United Nations Office for Outer Space Affairs, lưu trữ từ tài liệu gốc ngày 21 tháng 4 năm 2010, truy cập ngày 28 tháng 3 năm 2010
  275. How many States have signed and ratified the five international treaties governing outer space?, United Nations Office for Outer Space Affairs, ngày 1 tháng 1 năm 2006, lưu trữ từ tài liệu gốc ngày 21 tháng 4 năm 2010, truy cập ngày 28 tháng 3 năm 2010
  276. Do the five international treaties regulate military activities in outer space?, United Nations Office for Outer Space Affairs, lưu trữ từ tài liệu gốc ngày 21 tháng 4 năm 2010, truy cập ngày 28 tháng 3 năm 2010
  277. Agreement Governing the Activities of States on the Moon and Other Celestial Bodies, United Nations Office for Outer Space Affairs, lưu trữ từ tài liệu gốc ngày 9 tháng 8 năm 2010, truy cập ngày 28 tháng 3 năm 2010
  278. The treaties control space-related activities of States. What about non-governmental entities active in outer space, like companies and even individuals?, United Nations Office for Outer Space Affairs, lưu trữ từ tài liệu gốc ngày 21 tháng 4 năm 2010, truy cập ngày 28 tháng 3 năm 2010
  279. Statement by the Board of Directors of the IISL On Claims to Property Rights Regarding The Moon and Other Celestial Bodies (2004) (PDF), International Institute of Space Law, 2004, lưu trữ từ nguyên tác (PDF) ngày 22 tháng 12 năm 2009, truy cập ngày 28 tháng 3 năm 2010
  280. Further Statement by the Board of Directors of the IISL On Claims to Lunar Property Rights (2009) (PDF), International Institute of Space Law, ngày 22 tháng 3 năm 2009, lưu trữ từ nguyên tác (PDF) ngày 22 tháng 12 năm 2009, truy cập ngày 28 tháng 3 năm 2010
  281. a b c Nemet-Nejat, Karen Rhea (1998), Daily Life in Ancient Mesopotamia, Daily Life, Greenwood, tr. 203, ISBN 978-0-313-29497-6, lưu trữ từ tài liệu gốc ngày 16 tháng 6 năm 2020, truy cập ngày 11 tháng 6 năm 2019
  282. a b c d Black, Jeremy; Green, Anthony (1992), Gods, Demons and Symbols of Ancient Mesopotamia: An Illustrated Dictionary, The British Museum Press, tr. 135, ISBN 978-0-7141-1705-8, lưu trữ từ tài liệu gốc ngày 19 tháng 8 năm 2020, truy cập ngày 28 tháng 10 năm 2017
  283. a b c d Dexter, Miriam Robbins (1984), "Proto-Indo-European Sun Maidens and Gods of the Moon", Mankind Quarterly, 25 (1 & 2): 137–144
  284. a b La Lune, du voyage réel aux voyages imaginaires - Guide d'exposition (PDF) (trong tiếng Pháp), 2019CS1 maint: unrecognized language (link)
  285. a b Explained: The crescent in ‘Islamic’ flags (trong tiếng Anh), The Indian Express, ngày 25 tháng 7 năm 2019, truy cập ngày 26 tháng 11 năm 2020CS1 maint: unrecognized language (link)
  286. Zschietzschmann, W. (2006), Hellas and Rome: The Classical World in Pictures, Whitefish, Montana: Kessinger Publishing, tr. 23, ISBN 978-1-4286-5544-7CS1 maint: ref=harv (link)
  287. Cohen, Beth (2006), "Outline as a Special Technique in Black- and Red-figure Vase-painting", The Colors of Clay: Special Techniques in Athenian Vases, Los Angeles: Getty Publications, tr. 178–179, ISBN 978-0-89236-942-3, lưu trữ từ tài liệu gốc ngày 19 tháng 8 năm 2020, truy cập ngày 28 tháng 4 năm 2020CS1 maint: ref=harv (link)
  288. Marshack, Alexander (1991), The Roots of Civilization, Colonial Hill, Mount Kisco, NY.
  289. Brooks, A.S. and Smith, C.C. (1987): "Ishango revisited: new age determinations and cultural interpretations", The African Archaeological Review, 5 : 65–78.
  290. Duncan, David Ewing (1998), The Calendar, Fourth Estate Ltd., tr. 10–11, ISBN 978-1-85702-721-1
  291. For etymology, see Barnhart, Robert K. (1995), The Barnhart Concise Dictionary of Etymology, Harper Collins, tr. 487, ISBN 978-0-06-270084-1. For the lunar calendar of the Germanic peoples, see Birley, A. R. (Trans.) (1999), Agricola and Germany, Oxford World's Classics, US: Oxford University Press, tr. 108, ISBN 978-0-19-283300-6, lưu trữ từ tài liệu gốc ngày 17 tháng 6 năm 2020, truy cập ngày 11 tháng 6 năm 2019
  292. Mallory, J.P.; Adams, D.Q. (2006), The Oxford Introduction to Proto-Indo-European and the Proto-Indo-European World, Oxford Linguistics, Nhà xuất bản Đại học Oxford, tr. 98, 128, 317, ISBN 978-0-19-928791-8
  293. Smith, William George (1849), Dictionary of Greek and Roman Biography and Mythology: Oarses-Zygia, 3, J. Walton, tr. 768, lưu trữ từ tài liệu gốc ngày 26 tháng 11 năm 2020, truy cập ngày 29 tháng 3 năm 2010
  294. Estienne, Henri (1846), Thesaurus graecae linguae, 5, Didot, tr. 1001, lưu trữ từ tài liệu gốc ngày 28 tháng 7 năm 2020, truy cập ngày 29 tháng 3 năm 2010
  295. Islamic Calendars based on the Calculated First Visibility of the Lunar Crescent, University of Utrecht, lưu trữ từ tài liệu gốc ngày 11 tháng 1 năm 2014, truy cập ngày 11 tháng 1 năm 2014
  296. a b Lilienfeld, Scott O.; Arkowitz, Hal (2009), "Lunacy and the Full Moon", Scientific American, lưu trữ từ tài liệu gốc ngày 16 tháng 10 năm 2009, truy cập ngày 13 tháng 4 năm 2010
  297. Rotton, James; Kelly, I.W. (1985), "Much ado about the full moon: A meta-analysis of lunar-lunacy research", Psychological Bulletin, 97 (2): 286–306, doi:10.1037/0033-2909.97.2.286, PMID 3885282
  298. Martens, R.; Kelly, I.W.; Saklofske, D.H. (1988), "Lunar Phase and Birthrate: A 50-year Critical Review", Psychological Reports, 63 (3): 923–934, doi:10.2466/pr0.1988.63.3.923, PMID 3070616, S2CID 34184527
  299. Kelly, Ivan; Rotton, James; Culver, Roger (1986), "The Moon Was Full and Nothing Happened: A Review of Studies on the Moon and Human Behavior", Skeptical Inquirer, 10 (2): 129–143. Reprinted in The Hundredth Monkey - and other paradigms of the paranormal, edited by Kendrick Frazier, Prometheus Books. Revised and updated in The Outer Edge: Classic Investigations of the Paranormal, edited by Joe Nickell, Barry Karr, and Tom Genoni, 1996, CSICOP.
  300. Foster, Russell G.; Roenneberg, Till (2008), "Human Responses to the Geophysical Daily, Annual and Lunar Cycles", Current Biology, 18 (17): R784–R794, doi:10.1016/j.cub.2008.07.003, PMID 18786384, S2CID 15429616
  301. La Lune à travers les mots des poètes (trong tiếng Pháp), lanouvellerepublique.fr, ngày 19 tháng 10 năm 2019, truy cập ngày 26 tháng 11 năm 2020CS1 maint: unrecognized language (link)
  302. Claude Debussy : cinq choses à savoir sur le précurseur de la musique moderne (trong tiếng Pháp), Franceinfo, ngày 24 tháng 3 năm 2018, truy cập ngày 26 tháng 11 năm 2020CS1 maint: unrecognized language (link)
  303. Hey, Moon: Lunar Art Through the Ages (trong tiếng Anh), www.mutualart.com, truy cập ngày 26 tháng 11 năm 2020CS1 maint: unrecognized language (link)
  304. The moon in art! Art UK (trong tiếng Anh), artuk.org, truy cập ngày 26 tháng 11 năm 2020CS1 maint: unrecognized language (link)
  305. a b Playlist : On a marché sur la Lune (trong tiếng Pháp), Les Inrockuptibles, ngày 19 tháng 7 năm 2019, truy cập ngày 26 tháng 11 năm 2020CS1 maint: unrecognized language (link)
  306. La Lune au cinéma, entre fascination, enjeux géopolitiques et désintérêt au profit de lointaines galaxies (trong tiếng Pháp), Télérama, truy cập ngày 26 tháng 11 năm 2020CS1 maint: unrecognized language (link)
  307. 9 terrific movies about landing on the moon, from the sublime to the ridiculous (trong tiếng Anh), Vox, ngày 17 tháng 7 năm 2019, truy cập ngày 26 tháng 11 năm 2020CS1 maint: unrecognized language (link)
  308. "For the Moon Landing Anniversary, the Best Moon Movies", Wall Street Journal (trong tiếng Anh), ngày 15 tháng 7 năm 2019, ISSN 0099-9660, truy cập ngày 26 tháng 11 năm 2020CS1 maint: unrecognized language (link)
  309. Which National Flags Feature The Moon In Their Designs? (trong tiếng Anh), WorldAtlas, truy cập ngày 26 tháng 11 năm 2020CS1 maint: unrecognized language (link)
  310. Crescent Moon Symbol on National Flags (trong tiếng Anh), learnreligions, truy cập ngày 26 tháng 11 năm 2020CS1 maint: unrecognized language (link)
  311. a b 64 countries have religious symbols on their national flags (trong tiếng Anh), Pew Research Center, truy cập ngày 26 tháng 11 năm 2020CS1 maint: unrecognized language (link)
  312. a b Lang, Kenneth R. (2011), The Cambridge Guide to the Solar System' (lxb. 2nd), Cambridge University Press, ISBN 9781139494175, lưu trữ từ nguyên tác ngày 1 tháng 1 năm 2016
  313. Morais và Morbidelli 2002
  314. a b c d e f g h i Williams, Dr. David R. (ngày 2 tháng 2 năm 2006), Moon Fact Sheet, NASA/National Space Science Data Center, lưu trữ từ tài liệu gốc ngày 23 tháng 3 năm 2010, truy cập ngày 31 tháng 12 năm 2008
  315. Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Lemoine, Frank G. (ngày 1 tháng 1 năm 1997), "Topography of the Moon from the Clementine lidar", Journal of Geophysical Research, 102 (E1): 1601, Bibcode:1997JGR...102.1591S, doi:10.1029/96JE02940, hdl:2060/19980018849, S2CID 17475023, lưu trữ từ tài liệu gốc ngày 19 tháng 8 năm 2020, truy cập ngày 2 tháng 12 năm 2019
  316. Terry 2013, tr. 226
  317. Williams, James G.; Newhall, XX; Dickey, Jean O. (1996), "Lunar moments, tides, orientation, and coordinate frames", Planetary and Space Science, 44 (10): 1077–1080, Bibcode:1996P&SS...44.1077W, doi:10.1016/0032-0633(95)00154-9
  318. Makemson, Maud W. (1971), "Determination of selenographic positions", The Moon, 2 (3): 293–308, Bibcode:1971Moon....2..293M, doi:10.1007/BF00561882, S2CID 119603394
  319. a b Archinal, Brent A.; A'Hearn, Michael F.; Bowell, Edward G.; Conrad, Albert R.; Consolmagno, Guy J.; Courtin, Régis; et al. (2010), "Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009" (PDF), Celestial Mechanics and Dynamical Astronomy, 109 (2): 101–135, Bibcode:2011CeMDA.109..101A, doi:10.1007/s10569-010-9320-4, S2CID 189842666, lưu trữ từ nguyên tác (PDF) ngày 4 tháng 3 năm 2016, truy cập ngày 24 tháng 9 năm 2018 also available via usgs.gov (PDF), lưu trữ (PDF) từ tài liệu gốc ngày 27 tháng 4 năm 2019, truy cập ngày 26 tháng 9 năm 2018
  320. Matthews, Grant (2008), "Celestial body irradiance determination from an underfilled satellite radiometer: application to albedo and thermal emission measurements of the Moon using CERES", Applied Optics, 47 (27): 4981–4993, Bibcode:2008ApOpt..47.4981M, doi:10.1364/AO.47.004981, PMID 18806861
  321. A.R. Vasavada; D.A. Paige & S.E. Wood (1999), "Near-Surface Temperatures on Mercury and the Moon and the Stability of Polar Ice Deposits", Icarus, 141 (2): 179–193, Bibcode:1999Icar..141..179V, doi:10.1006/icar.1999.6175, S2CID 37706412, lưu trữ từ tài liệu gốc ngày 19 tháng 8 năm 2020, truy cập ngày 2 tháng 12 năm 2019

Nguồn tài liệu

Xem thêm

Liên kết ngoài