Mục từ này cần được bình duyệt
Khác biệt giữa các bản “Công thức Heron”
Dòng 106: Dòng 106:
 
:<math>A = \frac12ar + \frac12br + \frac12cr = r\left(\frac{a+b+c}{2}\right) = rs.</math>
 
:<math>A = \frac12ar + \frac12br + \frac12cr = r\left(\frac{a+b+c}{2}\right) = rs.</math>
  
Tam giác ''ABC'' cũng có thể được chia thành sáu tam giác hay ba cặp đồng dạng có đường cao {{mvar|r}} và cạnh đáy {{math|''s'' − ''a''}}, {{math|''s'' − ''b''}}, {{math|''s'' − ''c''}}. Tổng diện tích của chúng là:
+
Tam giác ''ABC'' cũng có thể được chia thành sáu tam giác hay ba cặp đồng dạng có đường cao {{mvar|r}} và cạnh đáy {{math|''s'' − ''a''}}, {{math|''s'' − ''b''}}, {{math|''s'' − ''c''}} có tổng diện tích (xem [[định lý cotang]]):
 
: <math>
 
: <math>
 
\begin{align}
 
\begin{align}

Phiên bản lúc 19:06, ngày 22 tháng 10 năm 2023

Một tam giác với ba cạnh có độ dài a, b, c và các góc tương ứng α, β, γ.

Trong hình học, công thức Heron là công thức tính diện tích tam giác theo độ dài ba cạnh a, b, c.[1]:151 Nếu là nửa chu vi tam giác và A là diện tích tam giác thì:[1]:151

Công thức Heron còn có thể được viết trực tiếp theo a, b, c:[2]

Một cách biểu diễn khác sử dụng định thức Cayley–Menger:[3]:1360

Công thức mang tên Heron (hoặc Hero), nhà toán học, vật lý, kỹ sư sống ở Alexandria vào thế kỷ 1.[4]:217 Chứng minh cổ xưa nhất được biết đến là của Heron xuất hiện trong cuốn MetricaDioptra; đây là lý do tên ông gắn với công thức.[2][5]:321–322 Mặc dù vậy theo một bản viết A Rập cổ, nó có thể đã được biết đến sớm hơn bởi Archimedes.[6]:127 Không có tài liệu nào của Archimedes đề cập đến định lý này, nhưng một số tác giả không nghi ngờ việc ông nắm bắt được nó.[6]:127[7]:157

Ví dụ

Xét ABC có độ dài các cạnh a = 5, b = 12, c = 13. Tam giác này có nửa chu vi:

Áp dụng công thức Heron, diện tích tam giác là:

Ở ví dụ này, độ dài các cạnh và diện tích đều là số nguyên, tức đây là tam giác Heron.[3]:1361 Tuy nhiên công thức Heron hoàn toàn có thể áp dụng trong trường hợp độ dài cạnh không là số nguyên.

Chứng minh

Chứng minh của Heron dùng hình học cơ bản tuy khéo léo nhưng rất dài dòng và phức tạp; tập hợp một chuỗi đồng nhất thức dường như không liên quan và dựa vào tính chất của tứ giác nội tiếp cùng tam giác vuông.[3]:1360 Có nhiều phương pháp hiện đại khác để chứng minh, một số đơn giản được trình bày dưới đây.

Sử dụng định lý cosin

Gọi a, b, c là các cạnh của tam giác và α, β, γ là các góc đối tương ứng. Áp dụng định lý cosin có:

từ đó suy ra:

Chiều cao của tam giác ứng với cạnh đáy a bằng b sin , theo đó diện tích

Sử dụng định lý Pythagoras

Tam giác có đường cao h chia cạnh đáy c thành d + (cd)

Chứng minh sau tương tự như chứng minh của Raifaizen.[8] Xét hình bên, theo định lý Pythagoras ta có b2 = h2 + d2a2 = h2 + (cd)2, từ đó a2b2 = c2 − 2cd. Phương trình này cho phép biểu diễn d theo các cạnh của tam giác:

Chiều cao h2 = b2d2, thay d bằng công thức ở trên và áp dụng hằng đẳng thức hiệu hai bình phương được:

Giờ áp dụng kết quả này vào công thức tính diện tích tam giác theo chiều cao:

Sử dụng định lý cotang

Ý nghĩa hình học của sa, sb, và sc.

Ở hình bên, tam giác ABC được chia thành ba tam giác có đường cao cùng bằng r là bán kính của đường tròn nội tiếp tam giác và cạnh đáy a, b, c. Tổng diện tích của chúng là:

Tam giác ABC cũng có thể được chia thành sáu tam giác hay ba cặp đồng dạng có đường cao r và cạnh đáy sa, sb, sc có tổng diện tích (xem định lý cotang):

Tham khảo

  1. a b Goodman, Michael K. J. (2016), An Introduction to the Early Development of Mathematics, Hoboken, New Jersey: John Wiley & Sons, ISBN 978-1-119-10498-8
  2. a b Kendig, Keith (tháng 5 năm 2000), "Is a 2000-Year-Old Formula Still Keeping Some Secrets?", The American Mathematical Monthly, 107 (5): 402–415, doi:10.1080/00029890.2000.12005213, S2CID 1214184
  3. a b c Weisstein, Eric W. (2002), CRC Concise Encyclopedia of Mathematics (lxb. 2), CRC Press, ISBN 978-1-4200-3522-3
  4. Ceccarelli, Marco, bt. (2007), History of Mechanism and Machine Science, Springer Netherlands, ISBN 978-1-4020-6365-7
  5. Heath, Thomas (1921), A History of Greek Mathematics: From Aristarchus to Diophantus, vol. II, Oxford University Press
  6. a b Dunham, William (1990), Journey through Genius: Great Theorems of Mathematics, New York, NY: John Wiley & Sons, ISBN 978-0-471-50030-8
  7. Boyer, Carl B.; Merzbach, Uta C. (2011), A History of Mathematics (lxb. 3), Hoboken, N.J: John Wiley & Sons, ISBN 978-0-470-52548-7
  8. Raifaizen, Claude H. (tháng 1 năm 1971), "A Simpler Proof of Heron's Formula", Mathematics Magazine, 44 (1): 27–28, doi:10.1080/0025570X.1971.11976093, S2CID 118200248