Dòng 44: | Dòng 44: | ||
</math> | </math> | ||
− | Ở ví dụ này, độ dài các cạnh và diện tích đều là [[số nguyên]], tức đây là [[tam giác Heron]].<ref name=" | + | Ở ví dụ này, độ dài các cạnh và diện tích đều là [[số nguyên]], tức đây là [[tam giác Heron]].<ref name="Weisstein">{{rp|1361}} Tuy nhiên công thức Heron hoàn toàn có thể áp dụng trong trường hợp độ dài cạnh không là số nguyên. |
== Chứng minh == | == Chứng minh == |
Phiên bản lúc 17:34, ngày 21 tháng 10 năm 2023
Trong hình học, công thức Heron là công thức tính diện tích tam giác theo độ dài ba cạnh a, b, c.[1]:151 Nếu là nửa chu vi tam giác và A là diện tích tam giác thì:[1]:151
Công thức Heron còn có thể được viết trực tiếp theo a, b, c:[2]
Một cách biểu diễn khác sử dụng định thức Cayley–Menger:[3]:1360
Công thức mang tên Heron (hoặc Hero), nhà toán học, vật lý, kỹ sư sống ở Alexandria vào thế kỷ 1.[4]:217 Chứng minh cổ xưa nhất được biết đến là của Heron xuất hiện trong cuốn Metrica và Dioptra; đây là lý do tên ông gắn với công thức.[2][5]:321–322 Mặc dù vậy theo một bản viết A Rập cổ, nó có thể đã được biết đến sớm hơn bởi Archimedes.[6]:127 Không có tài liệu nào của Archimedes đề cập đến định lý này, nhưng một số tác giả không nghi ngờ việc ông nắm bắt được nó.[6]:127[7]:157
Ví dụ
Xét △ABC có độ dài các cạnh a = 5, b = 12, c = 13. Tam giác này có nửa chu vi:
Áp dụng công thức Heron, diện tích tam giác là:
Ở ví dụ này, độ dài các cạnh và diện tích đều là số nguyên, tức đây là tam giác Heron.Lỗi chú thích: Không có </ref>
để đóng thẻ <ref>
Xét hình bên, theo định lý Pythagoras ta có b2 = h2 + d2 và a2 = h2 + (c − d)2, từ đó a2 − b2 = c2 − 2cd. Phương trình này cho phép biểu diễn d theo các cạnh của tam giác:
Chiều cao h2 = b2 − d2, thay d bằng công thức ở trên và áp dụng hằng đẳng thức hiệu hai bình phương được:
Giờ áp dụng kết quả này vào công thức tính diện tích tam giác theo chiều cao:
Tham khảo
- ↑ a b Goodman, Michael K. J. (2016), An Introduction to the Early Development of Mathematics, Hoboken, New Jersey: John Wiley & Sons, ISBN 978-1-119-10498-8
- ↑ a b Kendig, Keith (tháng 5 năm 2000), "Is a 2000-Year-Old Formula Still Keeping Some Secrets?", The American Mathematical Monthly, 107 (5): 402–415, doi:10.1080/00029890.2000.12005213, S2CID 1214184
- ↑ Weisstein, Eric W. (2002), CRC Concise Encyclopedia of Mathematics (lxb. 2), CRC Press, ISBN 978-1-4200-3522-3
- ↑ Ceccarelli, Marco, bt. (2007), History of Mechanism and Machine Science, Springer Netherlands, ISBN 978-1-4020-6365-7
- ↑ Heath, Thomas (1921), A History of Greek Mathematics: From Aristarchus to Diophantus, vol. II, Oxford University Press
- ↑ a b Dunham, William (1990), Journey through Genius: Great Theorems of Mathematics, New York, NY: John Wiley & Sons, ISBN 978-0-471-50030-8
- ↑ Boyer, Carl B.; Merzbach, Uta C. (2011), A History of Mathematics (lxb. 3), Hoboken, N.J: John Wiley & Sons, ISBN 978-0-470-52548-7