Dòng 48: | Dòng 48: | ||
== Chứng minh == | == Chứng minh == | ||
− | Chứng minh của Heron dùng hình học cơ bản tuy khéo léo nhưng rất dài dòng và phức tạp; tập hợp một chuỗi đồng nhất thức dường như không liên quan và dựa vào tính chất của [[tứ giác nội tiếp]] cùng [[tam giác vuông]]. | + | Chứng minh của Heron dùng hình học cơ bản tuy khéo léo nhưng rất dài dòng và phức tạp; tập hợp một chuỗi đồng nhất thức dường như không liên quan và dựa vào tính chất của [[tứ giác nội tiếp]] cùng [[tam giác vuông]].<ref name="Weisstein"/>{{rp|1360}}. Có nhiều phương pháp hiện đại khác để chứng minh, một số đơn giản được trình bày dưới đây. |
=== Sử dụng định lý cosin === | === Sử dụng định lý cosin === |
Phiên bản lúc 18:50, ngày 20 tháng 10 năm 2023
Trong hình học, công thức Heron là công thức tính diện tích tam giác theo độ dài ba cạnh a, b, c.[1]:151 Nếu là nửa chu vi tam giác và A là diện tích tam giác thì:[1]:151
Công thức Heron còn có thể được viết trực tiếp theo a, b, c:[2]
nhân cả bốn thừa số trong căn, được:
Một cách biểu diễn khác sử dụng định thức Cayley–Menger:[3]:1360
Công thức mang tên Heron (hoặc Hero), nhà toán học, vật lý, kỹ sư sống ở Alexandria vào thế kỷ 1.[4]:217 Chứng minh cổ xưa nhất được biết đến là của Heron xuất hiện trong cuốn Metrica và Dioptra; đây là lý do tên ông gắn với công thức.[2][5]:321–322 Mặc dù vậy theo một bản viết A Rập cổ, nó có thể đã được biết đến sớm hơn bởi Archimedes.[6]:127 Không có tài liệu nào của Archimedes đề cập đến định lý này, nhưng một số tác giả không nghi ngờ việc ông nắm bắt được nó.[6]:127[7]:157
Ví dụ
Xét △ABC có độ dài các cạnh a = 5, b = 12, c = 13. Tam giác này có nửa chu vi:
Áp dụng công thức Heron, diện tích tam giác là:
Ở ví dụ này, độ dài các cạnh và diện tích đều là số nguyên, tức đây là tam giác Heron.[8] Tuy nhiên công thức Heron hoàn toàn có thể áp dụng trong trường hợp độ dài cạnh không là số nguyên.
Chứng minh
Chứng minh của Heron dùng hình học cơ bản tuy khéo léo nhưng rất dài dòng và phức tạp; tập hợp một chuỗi đồng nhất thức dường như không liên quan và dựa vào tính chất của tứ giác nội tiếp cùng tam giác vuông.[3]:1360. Có nhiều phương pháp hiện đại khác để chứng minh, một số đơn giản được trình bày dưới đây.
Sử dụng định lý cosin
Gọi a, b, c là các cạnh của tam giác và α, β, γ là các góc đối tương ứng. Áp dụng định lý cosin có:
từ đó suy ra:
Chiều cao của tam giác ứng với cạnh đáy a bằng b sin , theo đó diện tích
Tham khảo
- ↑ a b Goodman, Michael K. J. (2016), An Introduction to the Early Development of Mathematics, Hoboken, New Jersey: John Wiley & Sons, ISBN 978-1-119-10498-8
- ↑ a b Kendig, Keith (tháng 5 năm 2000), "Is a 2000-Year-Old Formula Still Keeping Some Secrets?", The American Mathematical Monthly, 107 (5): 402–415, doi:10.1080/00029890.2000.12005213, S2CID 1214184
- ↑ a b Weisstein, Eric W. (2002), CRC Concise Encyclopedia of Mathematics (lxb. 2), CRC Press, ISBN 978-1-4200-3522-3
- ↑ Ceccarelli, Marco, bt. (2007), History of Mechanism and Machine Science, Springer Netherlands, ISBN 978-1-4020-6365-7
- ↑ Heath, Thomas (1921), A History of Greek Mathematics: From Aristarchus to Diophantus, vol. II, Oxford University Press
- ↑ a b Dunham, William (1990), Journey through Genius: Great Theorems of Mathematics, New York, NY: John Wiley & Sons, ISBN 978-0-471-50030-8
- ↑ Boyer, Carl B.; Merzbach, Uta C. (2011), A History of Mathematics (lxb. 3), Hoboken, N.J: John Wiley & Sons, ISBN 978-0-470-52548-7
- ↑ Halbeisen, Lorenz; Hungerbühler, Norbert (tháng 8 năm 2020), "Heron triangles and their elliptic curves", Journal of Number Theory, 213: 232–253, doi:10.1016/j.jnt.2019.12.005, S2CID 208799942