Sửa đổi Số pi

Chú ý: Bạn chưa đăng nhập và địa chỉ IP của bạn sẽ hiển thị công khai khi lưu các sửa đổi.

Bạn có thể tham gia như người biên soạn chuyên nghiệp và lâu dài ở Bách khoa Toàn thư Việt Nam, bằng cách đăng ký và đăng nhập - IP của bạn sẽ không bị công khai và có thêm nhiều lợi ích khác.

Các sửa đổi có thể được lùi lại. Xin hãy kiểm tra phần so sánh bên dưới để xác nhận lại những gì bạn muốn làm, sau đó lưu thay đổi ở dưới để hoàn tất việc lùi lại sửa đổi.

Bản hiện tại Nội dung bạn nhập
Dòng 17: Dòng 17:
 
Lời giải cho bài toán được ghi chép như sau : "''Khi mà chu vi là một bộ 60 đơn vị (1 ''shush'', người Lưỡng Hà dùng [[hệ lục thập phân]]), khoảng vượt (cg. đường kính) là bao nhiêu ? Một phần ba của 60, chu vi, giảm đi, ta thấy 20, 20 là khoảng vượt. 2 lần vòng tròn rộng thêm 5, ta thấy 10. 10 đến 20, khoảng vượt cộng thêm, ta thấy 30, đó là khoảng vượt. Gấp ba lần, ta thấy 1*30 (1 ''shush'' và 30 đơn vị, tức là 90 đơn vị), 1*30 là chu vi của lũy''".
 
Lời giải cho bài toán được ghi chép như sau : "''Khi mà chu vi là một bộ 60 đơn vị (1 ''shush'', người Lưỡng Hà dùng [[hệ lục thập phân]]), khoảng vượt (cg. đường kính) là bao nhiêu ? Một phần ba của 60, chu vi, giảm đi, ta thấy 20, 20 là khoảng vượt. 2 lần vòng tròn rộng thêm 5, ta thấy 10. 10 đến 20, khoảng vượt cộng thêm, ta thấy 30, đó là khoảng vượt. Gấp ba lần, ta thấy 1*30 (1 ''shush'' và 30 đơn vị, tức là 90 đơn vị), 1*30 là chu vi của lũy''".
  
Cách đặt vấn đề và lời giải này là từ ghi chép rất cổ xưa, khi đó, văn phong và [[ngôn ngữ]] là còn chân phương dưới nhận thức hiện đại; tuy nhiên, điểm đặc biệt đáng chú ý là, khi chu vi là 60 thì đường kính sẽ là 1/3 của chu vi, là 20, rồi cộng 2 lần 5 đơn vị cho đường kính 20, được đường kính 30, sau đó lại nhân 3 lần để được chu vi của đường tròn lớn nhất. Điều này có thể được hiểu là, cư dân Lưỡng Hà có thể đã cho rằng tỷ lệ của chu vi đến đường kính của đường tròn là 3, trường hợp này đã được gặp trong nhiều ghi ghép khác. Nói thêm, 3 là tỷ lệ chính xác của chu vi đến đường kính trong trường hợp [[lục giác đều]], người Lưỡng Hà có thể đã cho rằng diện tích hình tròn không lớn hơn diện tích lục giác đều nhiều, và một tấm đất sét nung được tìm thấy vào năm 1936 ở Suse, nước [[Iran]], có niên đại vào khoảng năm 1680 TCN đã chỉ ra giá trị gần đúng hơn của tỷ lệ này là 3 cộng với 1/8 (3,125).
+
Cách đặt vấn đề và lời giải này là từ ghi chép rất cổ xưa, khi đó, văn phong và [[ngôn ngữ]] là còn chân phương dưới nhận thức hiện đại; tuy nhiên, điểm đặc biệt đáng chú ý là, khi chu vi là 60 thì đường kính sẽ là 1/3 của chu vi, là 20, rồi cộng 2 lần 5 đơn vị cho đường kính 20, được đường kính 30, sau đó lại nhân 3 lần để được chu vi của đường tròn lớn nhất. Điều này có thể được hiểu là, cư dân Lưỡng Hà có thể đã cho rằng tỷ lệ của chu vi đến đường kính của đường tròn là 3, trường hợp này đã được gặp trong nhiều ghi ghép khác. Nói thêm, 3 là tỷ lệ chính xác của chu vi đến đường kính trong trường hợp [[lục giác đều]], người Lưỡng Hà có thể đã cho rằng diện tích hình tròn không lớn hơn diện tích lục giác đều nhiều, và một tấm đất sét nung được tìm thấy vào năm 1936 ở Suse, nước Iran, có niên đại vào khoảng năm 1680 TCN đã chỉ ra giá trị gần đúng hơn của tỷ lệ này là 3 cộng với 1/8 (3,125).
  
 
===Văn minh Ai Cập cổ đại===
 
===Văn minh Ai Cập cổ đại===

Lưu ý rằng tất cả các đóng góp của bạn tại Bách khoa Toàn thư Việt Nam sẽ được phát hành theo giấy phép Creative Commons Ghi công–Chia sẻ tương tự (xem thêm Bản quyền). Nếu bạn không muốn những gì mình viết ra sẽ có thể được bình duyệt và có thể bị sửa đổi, và không sẵn lòng cho phép phát hành lại, xin đừng nhấn nút “Lưu trang”. Đảm bảo rằng chính bạn là tác giả của những gì mình viết ra, hoặc chép nó từ một nguồn thuộc phạm vi công cộng hoặc tự do tương đương. ĐỪNG ĐĂNG NỘI DUNG CÓ BẢN QUYỀN MÀ CHƯA XIN PHÉP!

Hủy bỏ Trợ giúp sửa đổi (mở cửa sổ mới)
Lấy từ “https://bktt.vn/Số_pi