Sửa đổi Luận đề Church-Turing

Chú ý: Bạn chưa đăng nhập và địa chỉ IP của bạn sẽ hiển thị công khai khi lưu các sửa đổi.

Bạn có thể tham gia như người biên soạn chuyên nghiệp và lâu dài ở Bách khoa Toàn thư Việt Nam, bằng cách đăng ký và đăng nhập - IP của bạn sẽ không bị công khai và có thêm nhiều lợi ích khác.

Các sửa đổi có thể được lùi lại. Xin hãy kiểm tra phần so sánh bên dưới để xác nhận lại những gì bạn muốn làm, sau đó lưu thay đổi ở dưới để hoàn tất việc lùi lại sửa đổi.

Bản hiện tại Nội dung bạn nhập
Dòng 1: Dòng 1:
 
{{mới}}
 
{{mới}}
[[Hình:Model of a Turing machine.jpg|nhỏ|350px|Một phiên bản máy Turing]]
+
Luận đề Church-Turing khẳng định “bất kì hàm nào tính được bằng một thuật toán thì cũng tính được bằng máy Turing”.
'''Luận đề Church-Turing''' khẳng định “bất kì hàm nào tính được bằng một thuật toán thì cũng tính được bằng [[máy Turing]]”.
 
  
 
Nói một cách cụ thể, nếu một việc có thể được thực hiện bởi một thuật toán, thì tồn tại một máy Turing thực hiện việc này. Khẳng định ngược lại là dễ thấy: bản thân mỗi máy Turing là một thuật toán.
 
Nói một cách cụ thể, nếu một việc có thể được thực hiện bởi một thuật toán, thì tồn tại một máy Turing thực hiện việc này. Khẳng định ngược lại là dễ thấy: bản thân mỗi máy Turing là một thuật toán.
Dòng 31: Dòng 30:
 
Luận đề Turing: Mọi hàm tính được (bằng thuật toán) đều là hàm tính được bởi máy Turing.
 
Luận đề Turing: Mọi hàm tính được (bằng thuật toán) đều là hàm tính được bởi máy Turing.
  
Hơn nữa, Turing chứng minh rằng các hàm tính được bởi máy Turing và bởi phép tính lambda là trùng nhau. Do đó luận đề của Church và luận đề của Turing có ý nghĩa tương đương và thường được gọi chung đó là luận đề Church-Turing.
+
Hơn nữa, Turing chứng minh rằng các hàm tính được bởi máy Turing và bởi phép tính lambda là trùng nhau. Do đó luận đề của Church và luận đề của Turing có ý nghĩa tương đương và thường được gọi chung đó là LDCT.
  
 
==Máy Turing==
 
==Máy Turing==
Dòng 53: Dòng 52:
 
# Di chuyển một bước sang phải hoặc trái trên băng.
 
# Di chuyển một bước sang phải hoặc trái trên băng.
  
Nếu ta ký hiệu <math>\Gamma</math> là bảng chữ cái của ký hiệu trên băng, và ký hiệu Q là tập trạng thái bên trong của máy, thì hành vi của máy có thể viết như một hàm chuyển,
+
Nếu ta ký hiệu Γ là bảng chữ cái của ký hiệu trên băng, và ký hiệu Q là tập trạng thái bên trong của máy, thì hành vi của máy có thể viết như một hàm chuyển,
  
<math>\delta : \text{Q} \times \Gamma \rightarrow \text{Q} \times \Gamma \times \{ \text{L, R} \}</math>
+
δ: Q×Γ→Q×Γ×{L,R}.
  
Ở đây L, R là hai ký hiệu đặc biệt để điều khiển việc di chuyển đầu đọc-viết sang trái (L) hoặc sang phải (R). Ví dụ, <math>\delta (q, a) = (r, b, L)</math> có nghĩa rằng: nếu máy nhìn ký hiệu a trên băng khi nó đang ở trạng thái q, thì nó sẽ cập nhật ký hiệu trên băng thành b, chuyển sang trạng thái r, và chuyển đầu đọc-viết sang trái.
+
Ở đây L, R là hai ký hiệu đặc biệt để điều khiển việc di chuyển đầu đọc-viết sang trái (L) hoặc sang phải (R).Ví dụ, δ(q,a) =(r,b,L) có nghĩa rằng: nếu máy nhìn ký hiệu a trên băng khi nó đang ở trạng thái q, thì nó sẽ cập nhật ký hiệu trên băng thành b, chuyển sang trạng thái r, và chuyển đầu đọc-viết sang trái.
  
Khởi đầu, máy đặt xâu vào w=w<sub>1</sub> w<sub>2</sub>...w<sub>n</sub> trên n ô trái nhất của băng, và phần còn lại của băng chứa toàn ký hiệu trắng; đầu đọc-viết được đặt ô trái nhất của băng; và máy ở một trạng thái gọi là trạng thái khởi đầu.
+
Khởi đầu, máy đặt xâu vào w=w_1 w_2…w_n trên n ô trái nhất của băng, và phần còn lại của băng chứa toàn ký hiệu trắng; đầu đọc-viết được đặt ô trái nhất của băng; và máy ở một trạng thái gọi là trạng thái khởi đầu.
  
 
Trong quá trình tính toán, máy thực hiện tính toán theo các luật được mô tả bởi hàm chuyển. Máy sử dụng băng như không gian làm việc: đọc và viết các ký hiệu trên băng. Các ký hiệu trên băng biểu diễn kết quả trung gian của quá trình tính toán. Máy sẽ tính toán cho đến khi đạt đến một trạng thái đặc biệt gọi là trạng thái dừng. Khi đó, các ký hiệu còn lại trên băng chính là kết quả tính toán.
 
Trong quá trình tính toán, máy thực hiện tính toán theo các luật được mô tả bởi hàm chuyển. Máy sử dụng băng như không gian làm việc: đọc và viết các ký hiệu trên băng. Các ký hiệu trên băng biểu diễn kết quả trung gian của quá trình tính toán. Máy sẽ tính toán cho đến khi đạt đến một trạng thái đặc biệt gọi là trạng thái dừng. Khi đó, các ký hiệu còn lại trên băng chính là kết quả tính toán.
Dòng 69: Dòng 68:
 
Tuy nhiên, năm 1930, Kurt Gödel đã chứng minh “Định lý bất toàn”. Định lý khẳng định rằng bất kì một hệ tiên đề hình thức độc lập nào đủ mạnh để miêu tả số học cũng hàm chứa những mệnh đề không thể khẳng định mà cũng không thể phủ định. Định lý này dấy lên mối nghi ngờ về sự tồn tại thuật toán cho bài toán quyết định của Hilbert.
 
Tuy nhiên, năm 1930, Kurt Gödel đã chứng minh “Định lý bất toàn”. Định lý khẳng định rằng bất kì một hệ tiên đề hình thức độc lập nào đủ mạnh để miêu tả số học cũng hàm chứa những mệnh đề không thể khẳng định mà cũng không thể phủ định. Định lý này dấy lên mối nghi ngờ về sự tồn tại thuật toán cho bài toán quyết định của Hilbert.
  
Để nghiên cứu bài toán quyết định, Alonzo Church và học trò của ông là Stephen Kleene sáng tạo ra phép tính lambda, từ đó giới thiệu lớp hàm định nghĩa bởi phép tính lambda, gọi là &lambda;-định nghĩa được. Họ đã chỉ ra rằng rất nhiều lớp hàm thường gặp trong lý thuyết số là λ-định nghĩa được.
+
Để nghiên cứu bài toán quyết định, Alonzo Church và học trò của ông là Stephen Kleene sáng tạo ra phép tính lambda, từ đó giới thiệu lớp hàm định nghĩa bởi phép tính lambda, gọi là λ-định nghĩa được. Họ đã chỉ ra rằng rất nhiều lớp hàm thường gặp trong lý thuyết số là λ-định nghĩa được.
  
Church và Gödel thảo luạn về phép tính lambda ở Đại học tổng hợp Princeton. Church đã gợi ý với Gödel rằng nên định nghĩa các hàm tính bởi thuật toán (hay ngắn gọn là hàm tính được) là các hàm &lambda;-định nghĩa được. Gödel không thấy bị thuyết phục bởi ý tưởng này. Ông gợi ý rằng khái niệm “thuật toán” nên được tiên đề hóa. Tuy nhiên, thay vì đưa ra một hệ tiên đề, Gödel lại cải tiến mọt ý tuởng của Jacques Herbrand để tạo nen các hàm đệ qui Herbrand-Gödel, gọi ngắn gọn là các hàm đệ quy. Sau đó, Kleene đã chứng minh rằng các phép tính lambda và các hàm đệ qui là tương đương. Với kết quả này, Church tin rằng các hàm tính được đuợc đều là các hàm đệ quy. Niềm tin này thuờng đuợc gọi là luạn đề Church.
+
Church và Gödel thảo luạn về phép tính lambda ở Đại học tổng hợp Princeton. Church đã gợi ý với Gödel rằng nên định nghĩa các hàm tính bởi thuật toán (hay ngắn gọn là hàm tính được) là các hàm λ-định nghĩa được. Gödel không thấy bị thuyết phục bởi ý tưởng này. Ông gợi ý rằng khái niệm “thuật toán” nên được tiên đề hóa. Tuy nhiên, thay vì đưa ra một hệ tiên đề, Gödel lại cải tiến mọt ý tuởng của Jacques Herbrand để tạo nen các hàm đệ qui Herbrand-Gödel, gọi ngắn gọn là các hàm đệ quy. Sau đó, Kleene đã chứng minh rằng các phép tính lambda và các hàm đệ qui là tương đương. Với kết quả này, Church tin rằng các hàm tính được đuợc đều là các hàm đệ quy. Niềm tin này thuờng đuợc gọi là luạn đề Church.
  
Nam 1936, trong bài báo, Church đã định nghĩa các hàm tính được như là các hàm đệ quy, hay tương đương, là &lambda;-định nghĩa được; và sử dụng định nghĩa này để chứng minh bài toán của Hilbert là không giải được. Ông thiết kế hai biểu thức trong phép tính lambda mà sự tuong đuong của chúng không thể tính đuợc bằng một hàm đệ quy. Nói cách khác, có nhiều phát biểu toán học khong thể chứng minh một cách co học bằng thuật toán.
+
Nam 1936, trong bài báo, Church đã định nghĩa các hàm tính được như là các hàm đệ quy, hay tương đương, là λ-định nghĩa được; và sử dụng định nghĩa này để chứng minh bài toán của Hilbert là không giải được. Ông thiết kế hai biểu thức trong phép tính lambda mà sự tuong đuong của chúng không thể tính đuợc bằng một hàm đệ quy. Nói cách khác, có nhiều phát biểu toán học khong thể chứng minh một cách co học bằng thuật toán.
  
 
Cũng vào năm 1936, trong bài báo, Alan Turing cũng chứng minh kết quả tương tự: bài toán của Hilbert là không giải được. Trong bài báo này, ông giới thiệu khái niệm máy Turing và khái niệm “tính được” (computability). Trong phần phụ lục của bài báo nổi tiếng này, Turing chứng minh rằng lớp hàm định nghĩa bởi phép tính lambda và bởi máy Turing là đồng nhất.
 
Cũng vào năm 1936, trong bài báo, Alan Turing cũng chứng minh kết quả tương tự: bài toán của Hilbert là không giải được. Trong bài báo này, ông giới thiệu khái niệm máy Turing và khái niệm “tính được” (computability). Trong phần phụ lục của bài báo nổi tiếng này, Turing chứng minh rằng lớp hàm định nghĩa bởi phép tính lambda và bởi máy Turing là đồng nhất.
Dòng 85: Dòng 84:
 
Liệu có thể chứng minh Luận đề Church-Turing? Về lý thuyết, điều này là không thể vì thuật toán theo nghĩa trực giác không phải là một khái niệm toán học chính xác. Tuy nhiên, cho đến nay, thực tiễn luôn chứng minh rằng luận đề đó là đúng đắn; người ta chưa tìm ra được hàm nào tính được (bằng thuật toán) theo một nghĩa trực giác hợp lý nào đó mà không tính được bằng máy Turing. Hơn nữa, một số bằng chứng kinh nghiệm sau đây ủng hộ Luận đề Church-Turing:
 
Liệu có thể chứng minh Luận đề Church-Turing? Về lý thuyết, điều này là không thể vì thuật toán theo nghĩa trực giác không phải là một khái niệm toán học chính xác. Tuy nhiên, cho đến nay, thực tiễn luôn chứng minh rằng luận đề đó là đúng đắn; người ta chưa tìm ra được hàm nào tính được (bằng thuật toán) theo một nghĩa trực giác hợp lý nào đó mà không tính được bằng máy Turing. Hơn nữa, một số bằng chứng kinh nghiệm sau đây ủng hộ Luận đề Church-Turing:
  
#Đã có nhiều mô hình tính toán khác nhau được đề xuất để hình thức hoá khái niệm thuật toán như “phép tính lambda (λ-calculus) ” của Church, “hàm đệ quy” của Gödel, “máy Turing”, “hệ Post”, và “thuật toán chính quy” của Markov. Tuy nhiên, chúng đều tương đương với máy Turing.
+
1. Đã có nhiều mô hình tính toán khác nhau được đề xuất để hình thức hoá khái niệm thuật toán như “phép tính lambda (λ-calculus) ” của Church, “hàm đệ quy” của Gödel, “máy Turing”, “hệ Post”, và “thuật toán chính quy” của Markov. Tuy nhiên, chúng đều tương đương với máy Turing.
#Lớp hàm tính được bởi máy Turing có tính bất biến mạnh. Chẳng hạn, hai hàm f (x) và g (x) tính được bởi máy Turing thì hàm tích f (x) g (x) và hàm hợp f (g (x)) cũng tính được bởi máy Turing. Tính bất biến này tương ứng với ý tưởng trực giác rằng nếu ta có thuật toán giải một số bài toán nào đó thì các bài toán nhận được bằng cách “tổ hợp” một cách hợp lý các bài toán này cũng có thuật toán để giải.
 
  
Cần nhấn mạnh rằng luận đề Church-Turing liên quan đến thuật toán chứ không phải những gì có thể tính toán bởi các máy vật lý. Trên thực tế, Alan Turing đã thiết kế máy nhằm mô phỏng hành vi tính toán của con người với giấy và bút. Khẳng định “các máy Turing có thể tính toán mọi thứ mà bất kỳ máy tính nào có thể tính toán” là một diễn dịch sai lầm. Bởi vì, trong các thao tác cơ bản thực hiện bởi máy tính vật lý, có những thao tác không thể thực hiện bởi con người chỉ với giấy và bút.
+
2. Lớp hàm tính được bởi máy Turing có tính bất biến mạnh. Chẳng hạn, hai hàm f (x) và g (x) tính được bởi máy Turing thì hàm tích f (x) g (x) và hàm hợp f (g (x)) cũng tính được bởi máy Turing. Tính bất biến này tương ứng với ý tưởng trực giác rằng nếu ta có thuật toán giải một số bài toán nào đó thì các bài toán nhận được bằng cách “tổ hợp” một cách hợp lý các bài toán này cũng có thuật toán để giải.
 +
 
 +
Cần nhấn mạnh rằng LDCT liên quan đến thuật toán chứ không phải những gì có thể tính toán bởi các máy vật lý. Trên thực tế, Alan Turing đã thiết kế máy nhằm mô phỏng hành vi tính toán của con người với giấy và bút. Khẳng định “các máy Turing có thể tính toán mọi thứ mà bất kỳ máy tính nào có thể tính toán” là một diễn dịch sai lầm. Bởi vì, trong các thao tác cơ bản thực hiện bởi máy tính vật lý, có những thao tác không thể thực hiện bởi con người chỉ với giấy và bút.
  
 
==Tài liệu tham khảo==
 
==Tài liệu tham khảo==

Lưu ý rằng tất cả các đóng góp của bạn tại Bách khoa Toàn thư Việt Nam sẽ được phát hành theo giấy phép Creative Commons Ghi công–Chia sẻ tương tự (xem thêm Bản quyền). Nếu bạn không muốn những gì mình viết ra sẽ có thể được bình duyệt và có thể bị sửa đổi, và không sẵn lòng cho phép phát hành lại, xin đừng nhấn nút “Lưu trang”. Đảm bảo rằng chính bạn là tác giả của những gì mình viết ra, hoặc chép nó từ một nguồn thuộc phạm vi công cộng hoặc tự do tương đương. ĐỪNG ĐĂNG NỘI DUNG CÓ BẢN QUYỀN MÀ CHƯA XIN PHÉP!

Hủy bỏ Trợ giúp sửa đổi (mở cửa sổ mới)

Bản mẫu dùng trong trang này: