Trong hình học, công thức Heron là công thức tính diện tích tam giác theo độ dài ba cạnh a, b, c.[1]:151 Nếu là nửa chu vi tam giác và A là diện tích tam giác thì:[1]:151
Công thức Heron còn có thể được viết trực tiếp theo a, b, c:[2]
nhân cả bốn thừa số trong căn, được:
Một cách biểu diễn khác sử dụng định thức Cayley–Menger:[3]:1360
Ví dụ
Xét △ABC có độ dài các cạnh a = 5, b = 12, c = 13. Tam giác này có nửa chu vi:
Áp dụng công thức Heron, diện tích tam giác là:
Ở ví dụ này, độ dài các cạnh và diện tích đều là số nguyên, tức đây là tam giác Heron.[4] Tuy nhiên công thức Heron hoàn toàn có thể áp dụng trong trường hợp độ dài cạnh không là số nguyên.
Lịch sử
Công thức mang tên Heron (hoặc Hero), nhà toán học, vật lý, kỹ sư sống ở Alexandria vào thế kỷ 1.[5]:217 Chứng minh cổ xưa nhất được biết đến là của Heron xuất hiện trong mệnh đề 1.8 của cuốn Metrica.[2][6]:118
Tham khảo
- ↑ a b Goodman, Michael K. J. (2016), An Introduction to the Early Development of Mathematics, Hoboken, New Jersey: John Wiley & Sons, ISBN 978-1-119-10498-8
- ↑ a b Kendig, Keith (tháng 5 năm 2000), "Is a 2000-Year-Old Formula Still Keeping Some Secrets?", The American Mathematical Monthly, 107 (5): 402–415, doi:10.1080/00029890.2000.12005213, S2CID 1214184
- ↑ Weisstein, Eric W. (2002), CRC Concise Encyclopedia of Mathematics (lxb. 2), CRC Press, ISBN 978-1-4200-3522-3
- ↑ Halbeisen, Lorenz; Hungerbühler, Norbert (tháng 8 năm 2020), "Heron triangles and their elliptic curves", Journal of Number Theory, 213: 232–253, doi:10.1016/j.jnt.2019.12.005, S2CID 208799942
- ↑ Ceccarelli, Marco, bt. (2007), History of Mechanism and Machine Science, Springer Netherlands, ISBN 978-1-4020-6365-7
- ↑ Dunham, William (1990), Journey through Genius: Great Theorems of Mathematics, New York, NY: John Wiley & Sons, ISBN 978-0-471-50030-8