Công thức Heron
Trong hình học, công thức Heron là công thức tính diện tích tam giác theo độ dài ba cạnh a, b, c.[1]:151 Nếu là nửa chu vi tam giác và A là diện tích tam giác thì:[1]:151
Công thức Heron còn có thể được viết trực tiếp theo a, b, c:
nhân cả bốn thừa số trong căn, được:
Ví dụ
Xét △ABC có độ dài các cạnh a = 5, b = 12, c = 13. Tam giác này có nửa chu vi:
Áp dụng công thức Heron, diện tích tam giác là:
Ở ví dụ này, độ dài các cạnh và diện tích đều là số nguyên, tức đây là tam giác Heron.[2] Tuy nhiên công thức Heron hoàn toàn có thể áp dụng trong trường hợp độ dài cạnh không là số nguyên.
Tham khảo
- ↑ a b Goodman, Michael K. J. (2016), An Introduction to the Early Development of Mathematics, Hoboken, New Jersey: John Wiley & Sons, ISBN 978-1-119-10498-8
- ↑ Halbeisen, Lorenz; Hungerbühler, Norbert (tháng 8 năm 2020), "Heron triangles and their elliptic curves", Journal of Number Theory, 213: 232–253, doi:10.1016/j.jnt.2019.12.005, S2CID 208799942