Khác biệt giữa các bản “Tesseract”
Dòng 12: | Dòng 12: | ||
| caption2 = Tesseract quay kép quanh hai mặt phẳng trực giao trong không gian bốn chiều, chiếu vào mặt phẳng hai chiều. | | caption2 = Tesseract quay kép quanh hai mặt phẳng trực giao trong không gian bốn chiều, chiếu vào mặt phẳng hai chiều. | ||
}} | }} | ||
− | '''Tesseract''', còn gọi là '''hypercube''',{{sfn|Rucker|2014|p=31}} là một dạng tương tự của [[khối lập phương]] trong [[không gian bốn chiều]].{{sfn|Pickover|2009|p=282}} Thuật ngữ ''hypercube'' còn được sử dụng tổng quát để đề cập đến những dạng tương tự của khối lập phương (cube) trong những chiều không gian khác.{{sfn|Pickover|2009|p=282}} Cũng như khối lập phương có thể được hình dung bằng việc kéo hình vuông vào không gian ba chiều và quan sát hình dạng | + | '''Tesseract''', còn gọi là '''hypercube''',{{sfn|Rucker|2014|p=31}} là một dạng tương tự của [[khối lập phương]] trong [[không gian bốn chiều]].{{sfn|Pickover|2009|p=282}} Thuật ngữ ''hypercube'' còn được sử dụng tổng quát để đề cập đến những dạng tương tự của khối lập phương (''cube'') trong những chiều không gian khác.{{sfn|Pickover|2009|p=282}} Cũng như khối lập phương có thể được hình dung bằng việc kéo hình vuông vào không gian ba chiều và quan sát hình dạng được tạo ra, tesseract là vết của khối lập phương di chuyển vào không gian bốn chiều.{{sfn|Pickover|2009|p=282}}{{sfn|Rucker|2014|p=33}} |
{{clear}} | {{clear}} |
Phiên bản lúc 09:06, ngày 4 tháng 12 năm 2022
Tesseract, còn gọi là hypercube,[1] là một dạng tương tự của khối lập phương trong không gian bốn chiều.[2] Thuật ngữ hypercube còn được sử dụng tổng quát để đề cập đến những dạng tương tự của khối lập phương (cube) trong những chiều không gian khác.[2] Cũng như khối lập phương có thể được hình dung bằng việc kéo hình vuông vào không gian ba chiều và quan sát hình dạng được tạo ra, tesseract là vết của khối lập phương di chuyển vào không gian bốn chiều.[2][3]
Tham khảo
- ↑ Rucker 2014, tr. 31.
- ↑ a b c Pickover 2009, tr. 282.
- ↑ Rucker 2014, tr. 33.
Sách
- Pickover, Clifford A. (2009), The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publishing Company, Inc., ISBN 978-1-4027-5796-9
- Rucker, Rudy (2014), The Fourth Dimension: Toward a Geometry of Higher Reality, Courier Corporation, ISBN 978-0-486-77978-2